Teplofizika vysokikh temperatur
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teplofizika vysokikh temperatur, 2019, Volume 57, Issue 2, Pages 226–233
DOI: https://doi.org/10.1134/S0018151X19020020
(Mi tvt10999)
 

This article is cited in 6 scientific papers (total in 6 papers)

Heat and Mass Transfer and Physical Gasdynamics

Minimax optimization method in the two-dimensional boundary-value inverse heat conduction problem

A. Diligenskaya

Samara State Technical University
Full-text PDF (683 kB) Citations (6)
References:
Abstract: A method is proposed for the two-dimensional inverse heat conduction problem via reconstruction of the spatial and temporal density of a boundary heat flux. It is based on the optimal control theory for objects with distributed parameters. The method limits the set of desired solutions to the class of physically realized functions, which makes it possible to represent the desired-effect structure as a product of two onevariable functions. The problem of semi-infinite optimization, which minimizes temperature residuals in the uniform estimation metric, is formulated based on the parameterization of the desired characteristic (considered a control action). Analytical solution of the problem with the alternance properties of the desired optimal temperature deviations makes it possible to obtain the optimal values of the parameter vector.
Funding agency Grant number
Russian Foundation for Basic Research 18-08-00565
This study was supported by the Russian Foundation for Basic Research, project no. 18-08-00565.
Received: 31.01.2018
Accepted: 10.10.2018
English version:
High Temperature, 2019, Volume 57, Issue 2, Pages 203–210
DOI: https://doi.org/10.1134/S0040364419020029
Bibliographic databases:
Document Type: Article
UDC: 681.5.015, 517.977.56
Language: Russian
Citation: A. Diligenskaya, “Minimax optimization method in the two-dimensional boundary-value inverse heat conduction problem”, TVT, 57:2 (2019), 226–233; High Temperature, 57:2 (2019), 203–210
Citation in format AMSBIB
\Bibitem{Dil19}
\by A.~Diligenskaya
\paper Minimax optimization method in the two-dimensional boundary-value inverse heat conduction problem
\jour TVT
\yr 2019
\vol 57
\issue 2
\pages 226--233
\mathnet{http://mi.mathnet.ru/tvt10999}
\crossref{https://doi.org/10.1134/S0018151X19020020}
\elib{https://elibrary.ru/item.asp?id=41628092}
\transl
\jour High Temperature
\yr 2019
\vol 57
\issue 2
\pages 203--210
\crossref{https://doi.org/10.1134/S0040364419020029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000480572900009}
\elib{https://elibrary.ru/item.asp?id=37297489}
Linking options:
  • https://www.mathnet.ru/eng/tvt10999
  • https://www.mathnet.ru/eng/tvt/v57/i2/p226
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025