Teplofizika vysokikh temperatur
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teplofizika vysokikh temperatur, 2018, Volume 56, Issue 2, Pages 193–202
DOI: https://doi.org/10.7868/S0040364418020059
(Mi tvt10734)
 

This article is cited in 6 scientific papers (total in 6 papers)

Thermophysical Properties of Materials

Ideal and ultimate tensile strength of a solid body

V. G. Baidakov, A. O. Tipeev

Institute of Thermal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg
Full-text PDF (502 kB) Citations (6)
References:
Abstract: The mechanical stability of an ideal elastic solid under infinitesimal and finitesimal changes in its state parameters is considered. The temperature and density dependences of the isothermic moduli of bulk compression $K$, simple shear $\mu$, and tetragonal shear $\mu'$ in a Lennard-Jones face-centered cubic (FCC) crystal have been determined by means of molecular dynamic experiments in the region of stable and metastable states. It has been shown that the crystalline phase remains stable under long-wave spatially nonuniform density fluctuations on the spinodal $(K = 0)$ at pressures below the pressure of the endpoint of the melting line $(p < p_K < 0)$. Here, the critical nucleus formation work is also finitesimal. Hence, spinodal states in quasisteady-state processes at $p < 0$ not only are attainable, but the transition across the spinodal without destroying the homogeneity in the substance also proves to be feasible. In this case, the boundary of the ideal strength of a solid is set by the vanishing of the uniaxial compression modulus $\tilde K$ for a certain specified deformation direction. The spinodal also is not the boundary of the ideal strength of a solid at positive and small negative pressures. A solid loses its ability for a restorative response to finitesimal spatially nonuniform density disturbances before the spinodal $(\tilde K = 0)$ is attained.
Funding agency Grant number
Russian Science Foundation 14-19-00567
This work was supported by the Russian Scientific Foundation (project no. 14-19-00567).
Received: 14.07.2016
Accepted: 27.12.2016
English version:
High Temperature, 2018, Volume 56, Issue 2, Pages 184–192
DOI: https://doi.org/10.1134/S0018151X18020013
Bibliographic databases:
Document Type: Article
UDC: 536.421
Language: Russian
Citation: V. G. Baidakov, A. O. Tipeev, “Ideal and ultimate tensile strength of a solid body”, TVT, 56:2 (2018), 193–202; High Temperature, 56:2 (2018), 184–192
Citation in format AMSBIB
\Bibitem{BaiTip18}
\by V.~G.~Baidakov, A.~O.~Tipeev
\paper Ideal and ultimate tensile strength of a solid body
\jour TVT
\yr 2018
\vol 56
\issue 2
\pages 193--202
\mathnet{http://mi.mathnet.ru/tvt10734}
\crossref{https://doi.org/10.7868/S0040364418020059}
\elib{https://elibrary.ru/item.asp?id=34956804}
\transl
\jour High Temperature
\yr 2018
\vol 56
\issue 2
\pages 184--192
\crossref{https://doi.org/10.1134/S0018151X18020013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432524900005}
\elib{https://elibrary.ru/item.asp?id=35527886}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047227761}
Linking options:
  • https://www.mathnet.ru/eng/tvt10734
  • https://www.mathnet.ru/eng/tvt/v56/i2/p193
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024