Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 3, Pages 585–593
DOI: https://doi.org/10.4213/tvp99
(Mi tvp99)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Limit theorems for one class of Polling models

A. A. Sergeev

M. V. Lomonosov Moscow State University
References:
Abstract: The asymptotic independence of any finite set of random processes describing states of nodes is proved for an open transportation network with $N$ nodes and $M$ servers moving between them provided $N\to\infty$ and $M/N\to r$ ($0<r<\infty$). We determine that the limit flow of servers to a fixed node is a nonstationary Poisson process and describe behavior of the system in the thermodynamic limit. A system with Poisson input flow and a special kind of travel time distribution is examined as an example of such networks. The convergence to a limit dynamic system is proved for it. Also the steady point is specified and it is discovered that this point depends on the shape of travel time distribution only through its mean.
Keywords: polling model, random process, asymptotic independence, thermodynamic limit.
Received: 01.03.2005
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 3, Pages 510–518
DOI: https://doi.org/10.1137/S0040585X97981925
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Sergeev, “Limit theorems for one class of Polling models”, Teor. Veroyatnost. i Primenen., 50:3 (2005), 585–593; Theory Probab. Appl., 50:3 (2006), 510–518
Citation in format AMSBIB
\Bibitem{Ser05}
\by A.~A.~Sergeev
\paper Limit theorems for one class of Polling models
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 3
\pages 585--593
\mathnet{http://mi.mathnet.ru/tvp99}
\crossref{https://doi.org/10.4213/tvp99}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223222}
\zmath{https://zbmath.org/?q=an:1115.60093}
\elib{https://elibrary.ru/item.asp?id=9156435}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 3
\pages 510--518
\crossref{https://doi.org/10.1137/S0040585X97981925}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241047600015}
Linking options:
  • https://www.mathnet.ru/eng/tvp99
  • https://doi.org/10.4213/tvp99
  • https://www.mathnet.ru/eng/tvp/v50/i3/p585
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :138
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024