|
Teoriya Veroyatnostei i ee Primeneniya, 1979, Volume 24, Issue 1, Pages 191–198
(Mi tvp974)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Short Communications
Conditioned stable random walk with a negative drift
V. I. Afanas'ev Moscow
Abstract:
Let $(S_n, n\ge 0)$ be a random walk with a negative drift, $T=\min\{n\colon S_n\le 0\}$. We prove that if the Cramer's type conditions are satisfied then there exists a constant $\Delta>0$ such that the random functions $S_{[nt]}/ \Delta n^{1/2}$, $0\le t\le 1$ considered under the condition $T>n$, converge weakly to a Brownian excursion when $n\to\infty$.
Received: 23.12.1977
Citation:
V. I. Afanas'ev, “Conditioned stable random walk with a negative drift”, Teor. Veroyatnost. i Primenen., 24:1 (1979), 191–198; Theory Probab. Appl., 24:1 (1979), 192–199
Linking options:
https://www.mathnet.ru/eng/tvp974 https://www.mathnet.ru/eng/tvp/v24/i1/p191
|
|