Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1979, Volume 24, Issue 1, Pages 184–191 (Mi tvp973)  

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

On the local growth of random fields with independent increments

N. M. Zinčenko

Kiev
Full-text PDF (478 kB) Citations (3)
Abstract: The paper deals with the behaviour of a random field $\xi (t,s)$ with independent increments in the neighbourhood of zero. The classes of upper and lower functions for such fields are defined. It is proved that the real function $\varphi (t,s)$ under some additional assumptions is upper (lower) function if the integral
$$ \int_0^{t_0}\int_0^{s_0} [ts]^{-1} \mathbf P\{\xi(t,s)>\varphi(t,s)\}\,ds\,dt $$
is convergent (divergent). As a consequence we obtain the integral criterion for the 2-parameter Brownian motion and the law of iterated logarithm for this field. All results are generalized for the case off $n$-dimensional parameter.
Received: 29.04.1977
English version:
Theory of Probability and its Applications, 1979, Volume 24, Issue 1, Pages 184–191
DOI: https://doi.org/10.1137/1124020
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. M. Zinčenko, “On the local growth of random fields with independent increments”, Teor. Veroyatnost. i Primenen., 24:1 (1979), 184–191; Theory Probab. Appl., 24:1 (1979), 184–191
Citation in format AMSBIB
\Bibitem{Zin79}
\by N.~M.~Zin{\v{c}}enko
\paper On the local growth of random fields with independent increments
\jour Teor. Veroyatnost. i Primenen.
\yr 1979
\vol 24
\issue 1
\pages 184--191
\mathnet{http://mi.mathnet.ru/tvp973}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=522252}
\zmath{https://zbmath.org/?q=an:0432.60065|0396.60052}
\transl
\jour Theory Probab. Appl.
\yr 1979
\vol 24
\issue 1
\pages 184--191
\crossref{https://doi.org/10.1137/1124020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JX60900019}
Linking options:
  • https://www.mathnet.ru/eng/tvp973
  • https://www.mathnet.ru/eng/tvp/v24/i1/p184
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024