|
Teoriya Veroyatnostei i ee Primeneniya, 1979, Volume 24, Issue 1, Pages 160–164
(Mi tvp966)
|
|
|
|
Short Communications
Some examples of equivalent and orthogonal Gaussian distributions
S. M. Krasnits'kiĭ Kiev
Abstract:
Let $t = (t_1,\dots, t_N)\subset T\in E^N$, $\lambda=(\lambda_1,\dots,\lambda_N)\in E^N$, $E^N$ be the $N$-dimensional Euclidean space, $\xi_i\colon T \to E^1$, $i=1,2$, be homogeneous Gaussian fields, and let $\nu_1$, $\nu_2$ be measures induced by $\xi_1$, $\xi_2$. The random fields $\xi_1$ and $\xi_2$ are supposed to have the rational spectral densities. Three examples illustrating the difference between the cases $N=1$ and $N\ge 2$ are given.
Received: 22.07.1977
Citation:
S. M. Krasnits'kiǐ, “Some examples of equivalent and orthogonal Gaussian distributions”, Teor. Veroyatnost. i Primenen., 24:1 (1979), 160–164; Theory Probab. Appl., 24:1 (1979), 161–165
Linking options:
https://www.mathnet.ru/eng/tvp966 https://www.mathnet.ru/eng/tvp/v24/i1/p160
|
Statistics & downloads: |
Abstract page: | 195 | Full-text PDF : | 83 |
|