Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 3, Pages 564–570
DOI: https://doi.org/10.4213/tvp96
(Mi tvp96)
 

This article is cited in 6 scientific papers (total in 6 papers)

Short Communications

Maximal branching processes with non-negative values

A. V. Lebedev

M. V. Lomonosov Moscow State University
Full-text PDF (839 kB) Citations (6)
References:
Abstract: A generalization of the maximal branching processes introduced by Lamperti from the domain $\mathbf{Z}_+$ to $\mathbf{R}_+$ is proved. Some properties of these processes are investigated, an ergodic theorem is proved, and examples are given. Applications of the maximal branching processes to the queueing theory are given.
Keywords: maximal branching processes, ergodic theorem, association, monotonicity with respect to parameters, gated infinite-server systems.
Received: 29.01.2002
Revised: 03.02.2003
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 3, Pages 482–488
DOI: https://doi.org/10.1137/S0040585X97981895
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Lebedev, “Maximal branching processes with non-negative values”, Teor. Veroyatnost. i Primenen., 50:3 (2005), 564–570; Theory Probab. Appl., 50:3 (2006), 482–488
Citation in format AMSBIB
\Bibitem{Leb05}
\by A.~V.~Lebedev
\paper Maximal branching processes with non-negative values
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 3
\pages 564--570
\mathnet{http://mi.mathnet.ru/tvp96}
\crossref{https://doi.org/10.4213/tvp96}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223219}
\zmath{https://zbmath.org/?q=an:1115.60079}
\elib{https://elibrary.ru/item.asp?id=9156432}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 3
\pages 482--488
\crossref{https://doi.org/10.1137/S0040585X97981895}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241047600011}
Linking options:
  • https://www.mathnet.ru/eng/tvp96
  • https://doi.org/10.4213/tvp96
  • https://www.mathnet.ru/eng/tvp/v50/i3/p564
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :162
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024