Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1979, Volume 24, Issue 1, Pages 18–33 (Mi tvp948)  

This article is cited in 10 scientific papers (total in 10 papers)

On the probabilities of large deviations for the maximum of sums of independent random variables

A. K. Aleškevičiene

Vilnius
Abstract: Let $\xi_1,\xi_2,\dots$ be a sequence of independent identically distributed random variables with, non-degenerate distribution function $F(x)$,
$$ a=\mathbf E\xi_1,\quad\sigma^2=\mathbf D\xi_1,\quad S_{n}=\sum_{l=1}^n\xi_l,\quad \overline S_n=\max_{1\le k\le n}S_k,\quad\overline F(x)=\mathbf P\{\bar S_n<x\} $$
. We prove that if $a=0$ and
$$ \int_{-\infty}^{\infty} e^{hy}\,dF(y)< \infty,\qquad |h|\le A,\ A>0, $$
then for $n\to\infty$, $1<x=o(\sqrt{n})$
$$ \frac{1-\overline F_n(x\overline{\sigma}\sqrt{n})}{1-G(x)}= \exp\biggl\{\frac{x^{3}}{\sqrt{n}}\lambda\biggl(\frac{x}{\sqrt{n}}\biggr)\biggr\} \biggl[1+O\biggl(\frac{x}{\sqrt{n}}+e^{-x^2/8}\biggr)\biggr], $$
where $\displaystyle G(x)=(2/\pi)^{1/2}\int_{0}^x e^{-u^2/2}\,du$ ($x\ge 0$), $G(x)=0$ ($x<0$) and $\lambda(u)$ is a Cramer's power series. Analogous statement is proved for the case $a>0$. We obtain also the theorems on the probabilities of large deviations for $\overline S_n$ in the Linnik's zones.
Received: 26.01.1976
English version:
Theory of Probability and its Applications, 1979, Volume 24, Issue 1, Pages 16–33
DOI: https://doi.org/10.1137/1124002
Bibliographic databases:
Language: Russian
Citation: A. K. Aleškevičiene, “On the probabilities of large deviations for the maximum of sums of independent random variables”, Teor. Veroyatnost. i Primenen., 24:1 (1979), 18–33; Theory Probab. Appl., 24:1 (1979), 16–33
Citation in format AMSBIB
\Bibitem{Ale79}
\by A.~K.~Ale{\v s}kevi{\v{c}}iene
\paper On the probabilities of large deviations for the maximum of sums of independent random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1979
\vol 24
\issue 1
\pages 18--33
\mathnet{http://mi.mathnet.ru/tvp948}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=522234}
\zmath{https://zbmath.org/?q=an:0396.60030|0432.60032}
\transl
\jour Theory Probab. Appl.
\yr 1979
\vol 24
\issue 1
\pages 16--33
\crossref{https://doi.org/10.1137/1124002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JX60900002}
Linking options:
  • https://www.mathnet.ru/eng/tvp948
  • https://www.mathnet.ru/eng/tvp/v24/i1/p18
    Cycle of papers
    This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024