Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 3, Pages 501–516
DOI: https://doi.org/10.4213/tvp91
(Mi tvp91)
 

This article is cited in 8 scientific papers (total in 8 papers)

The uniform distribytion on sphere in $R^s$. I. Properties of projections

V. I. Khokhlov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The distribution law of the first $k$ coordinates of a point uniformly distributed over a high dimensional sphere and the distribution law of $k$ independent standard normal variables, as $n\to\infty$ with $k$ fixed, are considered. The main result of this paper is a lower bound on the variational distance. The well-known upper bound due to Diaconis and Freedman has been made more precise.
Keywords: variational distance, uniform distribution on a sphere.
Received: 03.07.2005
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 3, Pages 386–399
DOI: https://doi.org/10.1137/S0040585X97981846
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Khokhlov, “The uniform distribytion on sphere in $R^s$. I. Properties of projections”, Teor. Veroyatnost. i Primenen., 50:3 (2005), 501–516; Theory Probab. Appl., 50:3 (2006), 386–399
Citation in format AMSBIB
\Bibitem{Kho05}
\by V.~I.~Khokhlov
\paper The uniform distribytion on sphere in~$R^s$. I.~Properties of projections
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 3
\pages 501--516
\mathnet{http://mi.mathnet.ru/tvp91}
\crossref{https://doi.org/10.4213/tvp91}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223214}
\zmath{https://zbmath.org/?q=an:1117.60013}
\elib{https://elibrary.ru/item.asp?id=9156427}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 3
\pages 386--399
\crossref{https://doi.org/10.1137/S0040585X97981846}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241047600003}
Linking options:
  • https://www.mathnet.ru/eng/tvp91
  • https://doi.org/10.4213/tvp91
  • https://www.mathnet.ru/eng/tvp/v50/i3/p501
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024