Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 3, Pages 480–500
DOI: https://doi.org/10.4213/tvp90
(Mi tvp90)
 

This article is cited in 7 scientific papers (total in 7 papers)

Martingale selection problem in the case of finite disrete time

D. B. Rokhlin

Rostov State University
References:
Abstract: We consider a multivalued stochastic process specified on a filtered probability space. Assuming that the values of the process are convex we establish a criterion for the existence of an adapted sequence of selectors that can be transformed into a martingale by an equivalent change of measure. The criterion has a geometric nature and is expressed in terms of the supports of the regular conditional upper distributions of the elements of the multivalued process.
Keywords: martingale measures, multivalued mappings, measurable choice, supports of regular conditional distributions, Castaing's representation.
Received: 02.08.2004
Revised: 14.03.2005
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 3, Pages 420–435
DOI: https://doi.org/10.1137/S0040585X97981834
Bibliographic databases:
Language: Russian
Citation: D. B. Rokhlin, “Martingale selection problem in the case of finite disrete time”, Teor. Veroyatnost. i Primenen., 50:3 (2005), 480–500; Theory Probab. Appl., 50:3 (2006), 420–435
Citation in format AMSBIB
\Bibitem{Rok05}
\by D.~B.~Rokhlin
\paper Martingale selection problem in the case of finite disrete time
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 3
\pages 480--500
\mathnet{http://mi.mathnet.ru/tvp90}
\crossref{https://doi.org/10.4213/tvp90}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223213}
\zmath{https://zbmath.org/?q=an:1125.60038}
\elib{https://elibrary.ru/item.asp?id=9156426}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 3
\pages 420--435
\crossref{https://doi.org/10.1137/S0040585X97981834}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241047600005}
Linking options:
  • https://www.mathnet.ru/eng/tvp90
  • https://doi.org/10.4213/tvp90
  • https://www.mathnet.ru/eng/tvp/v50/i3/p480
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024