Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 1, Pages 150–171
DOI: https://doi.org/10.4213/tvp9
(Mi tvp9)
 

This article is cited in 24 scientific papers (total in 24 papers)

Nonlinear estimation in anisotropic multiindex denoising. Sparse case

G. Kerkyacharian, O. V. Lepskiĭ, D. Picard
References:
Abstract: In dimension one, it has long been observed that the minimax rates of convergences in the scale of Besov spaces present essentially two regimes (and a boundary): dense and the sparse zones. In this paper, we consider the problem of denoising a function depending on a multidimensional variable (for instance, an image), with anisotropic constraints of regularity (especially providing a possible disparity of the inhomogeneous aspect in different directions). The case of the dense zone has been investigated in the former paper [G. Kerkyacharian, O. Lepski, and D. Picard, Probab. Theory Related Fields, 121 (2001), pp. 137–170]. Here, our aim is to investigate the case of the sparse region. This case is more delicate in some aspects. For instance, it was an open question to decide whether this sparse case, in the $d$-dimensional context, has to be split into different regions corresponding to different minimax rates. We will see here that the answer is negative: we still observe a sparse region but with a unique minimax behavior, except, as usual, on the boundary. It is worthwhile to notice that our estimation procedure admits the choice of its parameters under which it is adaptive up to logarithmic factor in the “dense case” [G. Kerkyacharian, O. Lepski, and D. Picard, Probab. Theory Related Fields, 121 (2001), pp. 137–170] and minimax adaptive in the “sparse case”. It is also interesting to observe that in the sparse case the embedding properties of the spaces are fundamental.
Keywords: nonparametric estimation, denoising, anisotropic smoothness, minimax rate of convergence, anisotropic Besov spaces.
Received: 07.09.2007
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 1, Pages 58–77
DOI: https://doi.org/10.1137/S0040585X97982864
Bibliographic databases:
Language: English
Citation: G. Kerkyacharian, O. V. Lepskiǐ, D. Picard, “Nonlinear estimation in anisotropic multiindex denoising. Sparse case”, Teor. Veroyatnost. i Primenen., 52:1 (2007), 150–171; Theory Probab. Appl., 52:1 (2008), 58–77
Citation in format AMSBIB
\Bibitem{KerLepPic07}
\by G.~Kerkyacharian, O.~V.~Lepski{\v\i}, D.~Picard
\paper Nonlinear estimation in anisotropic multiindex denoising. Sparse case
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 1
\pages 150--171
\mathnet{http://mi.mathnet.ru/tvp9}
\crossref{https://doi.org/10.4213/tvp9}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354574}
\zmath{https://zbmath.org/?q=an:05315060}
\elib{https://elibrary.ru/item.asp?id=9466882}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 1
\pages 58--77
\crossref{https://doi.org/10.1137/S0040585X97982864}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254828600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42549098381}
Linking options:
  • https://www.mathnet.ru/eng/tvp9
  • https://doi.org/10.4213/tvp9
  • https://www.mathnet.ru/eng/tvp/v52/i1/p150
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:539
    Full-text PDF :170
    References:70
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024