|
Teoriya Veroyatnostei i ee Primeneniya, 1968, Volume 13, Issue 4, Pages 631–641
(Mi tvp899)
|
|
|
|
This article is cited in 10 scientific papers (total in 10 papers)
The distribution of the rang of random matrices over a finite field
G. V. Balakin Moscow
Abstract:
The present paper is concerned with a random matrix $A=\|a_{ij}\|$ ($i=\overline{1,t}$; $j=\overline{1,n}$), where $a_{ij}$ are independent random variables from a finite field $GF(q)$ with the following distribution:
$$
\mathbf P\{a_{ij}=a\in GF(q)\}=
\begin{cases}
1-\frac{\ln e^xn}n,&\text{if}\quad a=0
\\
\frac{\ln e^xn}{(q-1)n},&\text{if}\quad a\ne0
\end{cases}
$$
($x$ is a fixed number).
The distribution of the matrix rang for different values of $t$ and $n$ is found.
Received: 12.06.1967
Citation:
G. V. Balakin, “The distribution of the rang of random matrices over a finite field”, Teor. Veroyatnost. i Primenen., 13:4 (1968), 631–641; Theory Probab. Appl., 13:4 (1968), 594–605
Linking options:
https://www.mathnet.ru/eng/tvp899 https://www.mathnet.ru/eng/tvp/v13/i4/p631
|
|