|
Teoriya Veroyatnostei i ee Primeneniya, 1968, Volume 13, Issue 4, Pages 602–620
(Mi tvp896)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Nonlinear interpolation of components of diffusion Markov processes
R. Sh. Liptser, A. N. Shiryaev Moscow
Abstract:
A diffusion Markov process defined by the Ito equations (3) is considered. For the a posteriori probability densities $\pi_{\alpha\beta}(t,\tau)$, $\pi_\alpha(t,\tau)$, $0\le t\le\tau\le T$ defined in (2), differential equations in $\tau$ are deduced (see (21) and (13)). In §2 for the coefficients (31), it is shown that $\pi_\alpha(t,\tau)$ and $\pi_{\alpha\beta}(t,\tau)$ are Gaussian densities in $\alpha$ with parameters defined by (37), (38) and (65), (66).
Received: 27.12.1967
Citation:
R. Sh. Liptser, A. N. Shiryaev, “Nonlinear interpolation of components of diffusion Markov processes”, Teor. Veroyatnost. i Primenen., 13:4 (1968), 602–620; Theory Probab. Appl., 13:4 (1968), 564–583
Linking options:
https://www.mathnet.ru/eng/tvp896 https://www.mathnet.ru/eng/tvp/v13/i4/p602
|
|