Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 3, Pages 457–479
DOI: https://doi.org/10.4213/tvp89
(Mi tvp89)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the local limit theorem for critical Galton–Watson process

S. V. Nagaeva, V. I. Vakhtel'b

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Technische Universität München
References:
Abstract: The proof of the local limit theorem for a critical Galton–Watson process is given under minimal moment restrictions, i.e., under the condition that there exists the second moment of the number of direct offspring of one particle.
Keywords: Galton–Watson process, Bellman–Harris process, concentration function, local theorem, bilinear generating function.
Received: 25.04.2003
Revised: 30.01.2004
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 3, Pages 400–419
DOI: https://doi.org/10.1137/S0040585X97981822
Bibliographic databases:
Language: Russian
Citation: S. V. Nagaev, V. I. Vakhtel', “On the local limit theorem for critical Galton–Watson process”, Teor. Veroyatnost. i Primenen., 50:3 (2005), 457–479; Theory Probab. Appl., 50:3 (2006), 400–419
Citation in format AMSBIB
\Bibitem{NagWac05}
\by S.~V.~Nagaev, V.~I.~Vakhtel'
\paper On the local limit theorem for critical Galton--Watson process
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 3
\pages 457--479
\mathnet{http://mi.mathnet.ru/tvp89}
\crossref{https://doi.org/10.4213/tvp89}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223212}
\zmath{https://zbmath.org/?q=an:1116.60047}
\elib{https://elibrary.ru/item.asp?id=9156425}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 3
\pages 400--419
\crossref{https://doi.org/10.1137/S0040585X97981822}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241047600004}
Linking options:
  • https://www.mathnet.ru/eng/tvp89
  • https://doi.org/10.4213/tvp89
  • https://www.mathnet.ru/eng/tvp/v50/i3/p457
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:486
    Full-text PDF :207
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024