|
Teoriya Veroyatnostei i ee Primeneniya, 1968, Volume 13, Issue 3, Pages 534–542
(Mi tvp880)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Short Communications
Limit processes in a model of unequal probabilities arrangement of particles in cells
Yu. V. Bolotnikov Moscow
Abstract:
Let $n_1+n_2+\dots+n_t$ particles be arranged at random into $N$ cells, each of $n_m$ particles getting into the $k$-th cell with a probability $a_k^{(m)}$ ($k=1,2,\dots,N$; $m=1,2,\dots,t$). Let $\mu_0(n)$ be the number of empty cells after $n$ particles have been arranged. We regard $\mu_0(n)$ as a random function of the time parameter $n$, convergence of $\mu_0(n)$ to some– Gaussian or Poisson processes as $n$, $N\to\infty$ being proved.
Received: 14.04.1967
Citation:
Yu. V. Bolotnikov, “Limit processes in a model of unequal probabilities arrangement of particles in cells”, Teor. Veroyatnost. i Primenen., 13:3 (1968), 534–542; Theory Probab. Appl., 13:3 (1968), 504–511
Linking options:
https://www.mathnet.ru/eng/tvp880 https://www.mathnet.ru/eng/tvp/v13/i3/p534
|
Statistics & downloads: |
Abstract page: | 203 | Full-text PDF : | 146 |
|