Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1968, Volume 13, Issue 3, Pages 471–478 (Mi tvp867)  

This article is cited in 18 scientific papers (total in 18 papers)

On the first passage time of a given level for processes with independent increments

D. V. Gusak, V. S. Korolyuk

Kiev
Abstract: The distribution of the first passage time of a non-negative level for a homogeneous process with independent increments $\xi(t)$ is studied, $\xi(t)$ having a bounded variation, and its characteristic function being of the form $\mathbf Me^{i\alpha\xi(t)}=e^{i\psi(\alpha)}$, where
$$ \psi(\alpha)=i\alpha a+\int_{-\infty}^0(e^{i\alpha x}-1)\,dM(x)+\int_0^\infty(e^{i\alpha x}-1)\,dN(x). $$

The double transformation of the distribution considered is shown to be
$$ \theta(s,\alpha)= \begin{cases} -\frac{\varkappa^+(s,0)}{\pi^+(s,\alpha)}&(a\le0), \\ -\frac1{1-i\alpha a}\cdot\frac{\varkappa^+(s,0)}{\varkappa^+(s,\alpha)}&(a>0), \end{cases} $$
where $\varkappa^+(s,\alpha)$ is determined by the factorization identity
$$ \frac{s-\psi(\alpha)}{1-i\alpha a}=\varkappa^+(s,\alpha)\varkappa^-(s,\alpha)\quad(s>0,\ -\infty<\alpha<\infty). $$
Received: 01.08.1966
English version:
Theory of Probability and its Applications, 1968, Volume 13, Issue 3, Pages 438–447
DOI: https://doi.org/10.1137/1113053
Bibliographic databases:
Language: Russian
Citation: D. V. Gusak, V. S. Korolyuk, “On the first passage time of a given level for processes with independent increments”, Teor. Veroyatnost. i Primenen., 13:3 (1968), 471–478; Theory Probab. Appl., 13:3 (1968), 438–447
Citation in format AMSBIB
\Bibitem{GusKor68}
\by D.~V.~Gusak, V.~S.~Korolyuk
\paper On the first passage time of a~given level for processes with independent increments
\jour Teor. Veroyatnost. i Primenen.
\yr 1968
\vol 13
\issue 3
\pages 471--478
\mathnet{http://mi.mathnet.ru/tvp867}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0236993}
\zmath{https://zbmath.org/?q=an:0165.19303}
\transl
\jour Theory Probab. Appl.
\yr 1968
\vol 13
\issue 3
\pages 438--447
\crossref{https://doi.org/10.1137/1113053}
Linking options:
  • https://www.mathnet.ru/eng/tvp867
  • https://www.mathnet.ru/eng/tvp/v13/i3/p471
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024