Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1968, Volume 13, Issue 3, Pages 385–417 (Mi tvp862)  

This article is cited in 17 scientific papers (total in 17 papers)

On some asymptotically optimal non-parametric criteria

A. A. Borovkov, N. M. Sycheva

Novosibirsk
Abstract: Let $X$ be a simple sample of size $n$ from a continuous distribution function $F(x)$, $F_n(x)$ be the empirical distribution function determined by this sample. Let
$$ G_s(X)=\sqrt n\sup_{M(\theta_1,\theta_2)}\frac{F^0(t)-F_n(t)}{g(F^0(t))}, $$
where $F^0$ is a continuous distribution function, $M(\theta_1,\theta_2)=\{t\colon\theta_1\le F^0(t)\le\theta_2\}$, $0\le\theta_1<\theta_2<1$ are fixed, $g(t)$ belongs to the set of analytic on $[\theta_1,\theta_2]$ nonvanishing functions. A class of tests $\{G_g(X)\ge x\}$ ($g\in K(\theta_1,\theta_2)$) based on the statistics $G_g(X)$ for testing of the hypothesis $F=F^0$ against some set of a alternatives $F^1$ separafed from $F^0$ by a fixed distance
$$ 0<\delta\le\sup|F^0(t)-F^1(t)| $$
is considered. On this set some probabilistic measure $\mu$ is given. If a sequence of errorsof the first kind $\varepsilon=\mathbf P\{G_g(X)\ge x\mid F^0\}=\varepsilon(n)\to0$ as $n\to\infty$ is fixed, then it turns out to be possible to find a function $\psi$ independent of $\mu$ that realizes the asymptotically/ most powerful test.
The form of the function $\psi$ and the asymptotical formulas for the distribution $G_\psi(X)$ as $n\to\infty$ are given in the paper. Also the tables of quantiles of $G_\psi(X)$ for different $n$'s, a number of significance levels and intervals $[\theta_1,\theta_2]$ are given.
Received: 10.10.1967
English version:
Theory of Probability and its Applications, 1968, Volume 13, Issue 3, Pages 359–393
DOI: https://doi.org/10.1137/1113048
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, N. M. Sycheva, “On some asymptotically optimal non-parametric criteria”, Teor. Veroyatnost. i Primenen., 13:3 (1968), 385–417; Theory Probab. Appl., 13:3 (1968), 359–393
Citation in format AMSBIB
\Bibitem{BorSyc68}
\by A.~A.~Borovkov, N.~M.~Sycheva
\paper On some asymptotically optimal non-parametric criteria
\jour Teor. Veroyatnost. i Primenen.
\yr 1968
\vol 13
\issue 3
\pages 385--417
\mathnet{http://mi.mathnet.ru/tvp862}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=237066}
\zmath{https://zbmath.org/?q=an:0176.48805|0165.21204}
\transl
\jour Theory Probab. Appl.
\yr 1968
\vol 13
\issue 3
\pages 359--393
\crossref{https://doi.org/10.1137/1113048}
Linking options:
  • https://www.mathnet.ru/eng/tvp862
  • https://www.mathnet.ru/eng/tvp/v13/i3/p385
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :111
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024