Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1968, Volume 13, Issue 2, Pages 308–314 (Mi tvp847)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

On the stability of some theorems of characterization of the normal population

Hoang Huu Nhuab

a Moscow
b Hanoi
Full-text PDF (343 kB) Citations (2)
Abstract: In this paper we introduce two definitions:
Definition 1. Two random variables $\xi$ and $\eta$ are said to be $\varepsilon$-independent, if
$$ |\mathbf P\{\xi<x,\ \eta<y\}-\mathbf P\{\xi<x\}\mathbf P\{\eta<y\}|<\varepsilon $$
for all $x$ and $y$, where $\varepsilon$ ($0<\varepsilon<1$) is a given number.
Definition 2. A random variable $\xi$ is said to be $\varepsilon$-normal with the parameters $a,\sigma$ if its distribution function $F(x)$ satisfies the following condition:
$$ \biggl|F(x)-\Phi\biggl(\frac{x-a}\sigma\biggr)\biggr|<\varepsilon,\quad-\infty<x<\infty, $$
where
$$ \Phi(x)=\frac1{\sqrt2\pi}\int_{-\infty}^xe^{-u^2/2}du $$
Let $x_1,\dots,x_n$ be independent sample of size $n$ from a population with a distribution function $F(x)$ and
$$ \mathbf MX_j=a,\quad\mathbf DX_j=\sigma^2,\quad\beta_\delta=\mathbf M|X_j|^{2(1+\delta)},\quad0<\delta\le1. $$

Theorem.\textit{If $\overline x=\frac1n\sum_{j=1}^nx_j$ and $s^2=\frac1n\sum_{j=1}^n(x_i-\overline x)^2$ are $\varepsilon$-independent, then $x_j$ ($j=1,\dots,n$) are $\delta(\varepsilon)$-normal with the parameters $a$ and $\sigma$, where
$$ \delta(\varepsilon)\le\frac C{\sqrt{\log\bigl(\frac1\varepsilon\bigr)}}, $$
$C$ being a constant depending on $\sigma$, $n$, $\delta$ and $\beta_\sigma$.}
A similar result is obtained for the stability of the theorem of S. N. Bernstein [2].
Received: 17.12.1966
English version:
Theory of Probability and its Applications, 1968, Volume 13, Issue 2, Pages 299–304
DOI: https://doi.org/10.1137/1113033
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Hoang Huu Nhu, “On the stability of some theorems of characterization of the normal population”, Teor. Veroyatnost. i Primenen., 13:2 (1968), 308–314; Theory Probab. Appl., 13:2 (1968), 299–304
Citation in format AMSBIB
\Bibitem{Hoa68}
\by Hoang~Huu~Nhu
\paper On the stability of some theorems of characterization of the normal population
\jour Teor. Veroyatnost. i Primenen.
\yr 1968
\vol 13
\issue 2
\pages 308--314
\mathnet{http://mi.mathnet.ru/tvp847}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=234548}
\zmath{https://zbmath.org/?q=an:0167.47404|0165.21803}
\transl
\jour Theory Probab. Appl.
\yr 1968
\vol 13
\issue 2
\pages 299--304
\crossref{https://doi.org/10.1137/1113033}
Linking options:
  • https://www.mathnet.ru/eng/tvp847
  • https://www.mathnet.ru/eng/tvp/v13/i2/p308
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024