Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1998, Volume 43, Issue 1, Pages 82–96
DOI: https://doi.org/10.4213/tvp825
(Mi tvp825)
 

On a functional version of the convergence of a quadratic form in independent martingales to a $\chi^2$ distribution

B. Cadre

IRMAR, Universitè de Rennes I, France
Abstract: Let $(a_{ij})_{i,j\ge 1}$ be an infinite matrix of real numbers such that $a_{ii}=0$, $i\ge 1$ and let $(X^i)_{i\ge 1}$ be a sequence of independent martingales such that $\sup_{i\ge1}\mathsf{E}[(X_1^i)^4]<\infty$ and for each $i\ge 1$ the predictable compensator of the quadratic variation of $X^i$ is the identity function. If for each $n\ge 1$, $\sigma_n^2=\sum^n_{i,j=1}a^2_{ij}$ we give a necessary and sufficient condition so that the process defined for each $n\ge 1$ and $t\ge 1$, by $\sigma_n^{-1}\sum_{i<j\le n}a_{ij}X_t^iX^j_t$ converges in law to $((2\sqrt{p})^{-1}\sum_{i=1}^p((B_t^i)^2-t))_{t\le1}$, where $p\ge 1$ and $B^1,\dots,B^p$ are $p$ independent standard Brownian motions. We then study the case where $(X^i)_{i\ge 1}$ is a sequence of independent solutions to the ‘`Structure Equation.’
Keywords: quadratic forms, $\chi^2$ distributions, functional limit theorems, martingales, stochastic calculus, Brownian motion.
Received: 11.11.1996
English version:
Theory of Probability and its Applications, 1999, Volume 43, Issue 1, Pages 13–25
DOI: https://doi.org/10.1137/S0040585X97976635
Bibliographic databases:
Language: English
Citation: B. Cadre, “On a functional version of the convergence of a quadratic form in independent martingales to a $\chi^2$ distribution”, Teor. Veroyatnost. i Primenen., 43:1 (1998), 82–96; Theory Probab. Appl., 43:1 (1999), 13–25
Citation in format AMSBIB
\Bibitem{Cad98}
\by B.~Cadre
\paper On a~functional version of the convergence of a~quadratic form in independent martingales to a~$\chi^2$ distribution
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 1
\pages 82--96
\mathnet{http://mi.mathnet.ru/tvp825}
\crossref{https://doi.org/10.4213/tvp825}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1669984}
\zmath{https://zbmath.org/?q=an:0928.60011}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 1
\pages 13--25
\crossref{https://doi.org/10.1137/S0040585X97976635}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079809600002}
Linking options:
  • https://www.mathnet.ru/eng/tvp825
  • https://doi.org/10.4213/tvp825
  • https://www.mathnet.ru/eng/tvp/v43/i1/p82
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :143
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024