Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1998, Volume 43, Issue 1, Pages 18–40
DOI: https://doi.org/10.4213/tvp821
(Mi tvp821)
 

This article is cited in 50 scientific papers (total in 50 papers)

Random vectors with values in quaternion Hilbert spaces

N. N. Vakhania

Muskhelishvili Institute of Computational Mathematics
Abstract: The paper is devoted to a systematic study of basic primary concepts and facts that could be regarded as a part of the apparatus of a future theory of quaternion random variables and vectors. Mainly we deal with the infinite-dimensional case. Defined and analyzed are basic concepts of the theory such as mathematical expectation, covariance and cross-covariance operators, characteristic functional, Gaussian measures–for random vectors with values in separable Hilbert space over the field of quaternions.
The paper is self-contained. However, conceptually it can be regarded as a natural continuation of the work of N. N. Vakhania and N. P. Kandelaki [Theory Probab. Appl., 41 (1996), pp. 116–131], in which random vectors with values in complex Hilbert spaces are considered; the organization of this paper is similar to that earlier work.
Despite an apparent similarity in the formulations, noncommutativity in the quaternion case brings in a specific peculiarity, often hidden and unexpected. Indeed, to overcome these difficulties caused by noncommutativity one requires not so much ingenuity as thoroughness and accuracy in giving definitions and formulating and proving results.
Keywords: quaternion Hilbert space, quaternion Gaussian random variable, $\mathbb R$-, $\mathbb C$- and $\mathbb Q$-Gaussian random vectors, covariance andcross-covariance operators of quaternion random vectors, $\mathbb R$-, $\mathbb C$- and $\mathbb Q$-proper operators, quaternion random variable, quaternion random vector, $\mathbb R$-, $\mathbb C$- and $\mathbb Q$-proper random vectors.
Received: 29.10.1996
English version:
Theory of Probability and its Applications, 1999, Volume 43, Issue 1, Pages 99–115
DOI: https://doi.org/10.1137/S0040585X97976696
Bibliographic databases:
Language: Russian
Citation: N. N. Vakhania, “Random vectors with values in quaternion Hilbert spaces”, Teor. Veroyatnost. i Primenen., 43:1 (1998), 18–40; Theory Probab. Appl., 43:1 (1999), 99–115
Citation in format AMSBIB
\Bibitem{Vak98}
\by N.~N.~Vakhania
\paper Random vectors with values in quaternion Hilbert spaces
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 1
\pages 18--40
\mathnet{http://mi.mathnet.ru/tvp821}
\crossref{https://doi.org/10.4213/tvp821}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1669968}
\zmath{https://zbmath.org/?q=an:0943.60004}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 1
\pages 99--115
\crossref{https://doi.org/10.1137/S0040585X97976696}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079809600008}
Linking options:
  • https://www.mathnet.ru/eng/tvp821
  • https://doi.org/10.4213/tvp821
  • https://www.mathnet.ru/eng/tvp/v43/i1/p18
  • This publication is cited in the following 50 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025