Abstract:
Let ξ=(ξk)k∈N∗ be a stationary homogeneous Markov chain and its translate ξ+a=(ξk+ak)k∈N∗ be a real sequence. We prove an inequality for the total variation between the distributions of ξ and ξ+a. This result allows us to give sufficient conditions for absolute continuity of these distributions. Next, we consider ξ=(ξk)k∈N∗ a sequence of independent and identically distributed random variables and another sequence of independent variables η=(ηk)k∈N∗, which is independent of ξ. We estimate the total variation between the distributions of ξ and ξ+η and apply the obtained results to the problem of absolute continuity.
Keywords:
total variation, Markov chain, random translation, absolute continuity.
Citation:
C. Noquet, “Inequalities for the total variation between the
distributions of a sequence and its translate and
applications”, Teor. Veroyatnost. i Primenen., 44:3 (1999), 653–660; Theory Probab. Appl., 44:3 (2000), 561–569
\Bibitem{Noq99}
\by C.~Noquet
\paper Inequalities for the total variation between the
distributions of a~sequence and its translate and
applications
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 3
\pages 653--660
\mathnet{http://mi.mathnet.ru/tvp811}
\crossref{https://doi.org/10.4213/tvp811}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1805828}
\zmath{https://zbmath.org/?q=an:0967.60015}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 3
\pages 561--569
\crossref{https://doi.org/10.1137/S0040585X97977811}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000090154300009}
Linking options:
https://www.mathnet.ru/eng/tvp811
https://doi.org/10.4213/tvp811
https://www.mathnet.ru/eng/tvp/v44/i3/p653
This publication is cited in the following 1 articles:
“Absolute continuity between a Gibbs measure
and its translate”, Theory Probab. Appl., 49:4 (2005), 713–724