|
This article is cited in 11 scientific papers (total in 12 papers)
Estimation problems for coefficients of stochastic partial differential equations. Part II
I. A. Ibragimova, R. Z. Khas'minskiib a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Wayne State University, USA
Abstract:
As in Part I (see [I. A. Ibragimov and R. Z. Khas'minskii, Theory Probab. Appl., 43 (1999), pp. 370–387]), we consider the problem of estimation of functional parameters $a_k(t,x),\theta(t,x)$ by observing a solution $u_\varepsilon(t,x)$ of a stochastic partial differential equation
$$
du_\varepsilon(t)=\sum_{|k|\le 2p}a_kD_x^ku_\varepsilon+\theta\,dt+\varepsilon\,dw(t),
$$
where $w(t)$ is a Wiener process. We investigate problems of the existence of consistent estimates for $\theta$ and their rate of convergence to $\theta$ dependent on properties of the functional class $\Theta$, which a priori contains $\theta$.
Keywords:
inverse problems, stochastic differential equations, statistical estimation, nonparametric estimating problems.
Received: 09.12.1997
Citation:
I. A. Ibragimov, R. Z. Khas'minskii, “Estimation problems for coefficients of stochastic partial differential equations. Part II”, Teor. Veroyatnost. i Primenen., 44:3 (1999), 526–554; Theory Probab. Appl., 44:3 (2000), 469–494
Linking options:
https://www.mathnet.ru/eng/tvp802https://doi.org/10.4213/tvp802 https://www.mathnet.ru/eng/tvp/v44/i3/p526
|
Statistics & downloads: |
Abstract page: | 370 | Full-text PDF : | 162 | First page: | 28 |
|