Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1999, Volume 44, Issue 3, Pages 506–525
DOI: https://doi.org/10.4213/tvp801
(Mi tvp801)
 

This article is cited in 28 scientific papers (total in 29 papers)

A local limit theorem for random strict partitions

A. M. Vershika, G. A. Freimanb, Yu. V. Yakubovicha

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Israel
Abstract: We consider a set of partitions of natural number $n$ on distinct summands with uniform distribution. We investigate the limit shape of the typical partition as $n\to\infty$, which was found in [A. M. Vershik, Funct. Anal. Appl., 30 (1996), pp. 90–105], and fluctuations of partitions near its limit shape. The geometrical language we use allows us to reformulate the problem in terms of random step functions (Young diagrams). We prove statements of local limit theorem type which imply that joint distribution of fluctuations in a number of points is locally asymptotically normal. The proof essentially uses the notion of a large canonical ensemble of partitions.
Keywords: partition, Young diagram, large ensemble of partitions, local limit theorem.
Received: 15.09.1998
English version:
Theory of Probability and its Applications, 2000, Volume 44, Issue 3, Pages 453–468
DOI: https://doi.org/10.1137/S0040585X97977719
Bibliographic databases:
Language: Russian
Citation: A. M. Vershik, G. A. Freiman, Yu. V. Yakubovich, “A local limit theorem for random strict partitions”, Teor. Veroyatnost. i Primenen., 44:3 (1999), 506–525; Theory Probab. Appl., 44:3 (2000), 453–468
Citation in format AMSBIB
\Bibitem{VerFreYak99}
\by A.~M.~Vershik, G.~A.~Freiman, Yu.~V.~Yakubovich
\paper A local limit theorem for random strict partitions
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 3
\pages 506--525
\mathnet{http://mi.mathnet.ru/tvp801}
\crossref{https://doi.org/10.4213/tvp801}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1805818}
\zmath{https://zbmath.org/?q=an:0969.60034}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 3
\pages 453--468
\crossref{https://doi.org/10.1137/S0040585X97977719}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000090154300002}
Linking options:
  • https://www.mathnet.ru/eng/tvp801
  • https://doi.org/10.4213/tvp801
  • https://www.mathnet.ru/eng/tvp/v44/i3/p506
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:574
    Full-text PDF :255
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024