Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 1, Pages 129–149
DOI: https://doi.org/10.4213/tvp8
(Mi tvp8)
 

This article is cited in 7 scientific papers (total in 7 papers)

Probability generating functions for discrete real-valued random variables

M. L. Esquível

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
References:
Abstract: The probability generating function is a powerful technique for studying the law of finite sums of independent discrete random variables taking integer positive values. For real-valued discrete random variables, the well-known elementary theory of Dirichlet series and the symbolic computation packages available nowadays, such as Mathematica 5, allow us to extend this technique to general discrete random variables. Being so, the purpose of this work is twofold. First, we show that discrete random variables taking real values, nonnecessarily integer or rational, may be studied with probability generating functions. Second, we intend to draw attention to some practical ways of performing the necessary calculations.
Keywords: probability generating functions, finite sums of independent real-valued discrete random variables, Dirichlet series.
Received: 16.07.2004
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 1, Pages 40–57
DOI: https://doi.org/10.1137/S0040585X97982852
Bibliographic databases:
Language: English
Citation: M. L. Esquível, “Probability generating functions for discrete real-valued random variables”, Teor. Veroyatnost. i Primenen., 52:1 (2007), 129–149; Theory Probab. Appl., 52:1 (2008), 40–57
Citation in format AMSBIB
\Bibitem{Esq07}
\by M.~L.~Esqu{\'\i}vel
\paper Probability generating functions for discrete real-valued random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 1
\pages 129--149
\mathnet{http://mi.mathnet.ru/tvp8}
\crossref{https://doi.org/10.4213/tvp8}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354573}
\zmath{https://zbmath.org/?q=an:1147.60010}
\elib{https://elibrary.ru/item.asp?id=9466881}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 1
\pages 40--57
\crossref{https://doi.org/10.1137/S0040585X97982852}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254828600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42549125568}
Linking options:
  • https://www.mathnet.ru/eng/tvp8
  • https://doi.org/10.4213/tvp8
  • https://www.mathnet.ru/eng/tvp/v52/i1/p129
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:601
    Full-text PDF :747
    References:97
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024