Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1968, Volume 13, Issue 1, Pages 96–113 (Mi tvp795)  

On verifiable functions

V. P. Palamodov

Moscow
Abstract: The Linnik concept of verifiable functions is investigated in the case of normal distribution $N(\xi,\sigma^2)$. The question of verifiability of some analytic function $f$ is reduced by a method of complexification to that of its $C$-verifiability. A function $f(\xi,\sigma^2)$ is called $C$-verifiable if there exists a non-constant critical function $\varphi$ with power depending on complex $\xi$ and $\sigma^2$ ($\operatorname{Re}\sigma^2$) only through $f$. The paper also contains some necessary conditions for $f$ to be $C$-verifiable or verifiable in the Linnik sense.
Received: 18.01.1967
Bibliographic databases:
Language: Russian
Citation: V. P. Palamodov, “On verifiable functions”, Teor. Veroyatnost. i Primenen., 13:1 (1968), 96–113
Citation in format AMSBIB
\Bibitem{Pal68}
\by V.~P.~Palamodov
\paper On verifiable functions
\jour Teor. Veroyatnost. i Primenen.
\yr 1968
\vol 13
\issue 1
\pages 96--113
\mathnet{http://mi.mathnet.ru/tvp795}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=235656}
\zmath{https://zbmath.org/?q=an:0197.44701}
Linking options:
  • https://www.mathnet.ru/eng/tvp795
  • https://www.mathnet.ru/eng/tvp/v13/i1/p96
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024