Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1968, Volume 13, Issue 1, Pages 63–81 (Mi tvp793)  

This article is cited in 35 scientific papers (total in 35 papers)

Approximation of probability measures in variation and products of random matrices

V. N. Tutubalin

Moscow
Abstract: Let $G$ be the group of real unimodular matrices, $U$ its orthogonal subgroup, $D$ its diagonal subgroup, $g_1,g_2,\dots,g_n,\dots$ a sequence of independent equally distributed random elements of $G$, $g(n)=g_1g_2\dots g_n$. A method is given to approximate the distribution $\mu^n$ of $g(n)$ by a simpler measure $\mu_n$ such that $\operatorname{var}(\mu^n-\widetilde\mu_n)\to0$ as $n\to\infty$. Let
$$ g(N)=u_1(n)d(n)u_2(n),\quad u_1(n)\in U,\quad d(n)\in D,\quad u_2(n)\in U $$
Approximations of distributions of $u_1(n)$, $d(n)$ and $u_2(n)$ are given. The joint distribution of these random variables can be approximated as if $u_1(n)$, $d(n)$ and $u_2(n)$ be independent. A conclusion is deduced that the coordinate system $(u_1,d,u_2)$ in $G$ is appropriate to approximate the distribution of $g(n)$. The most general system (coordinates of a matrix are its elements) however appears not to be a good one for this purpose.
Received: 10.01.1967
English version:
Theory of Probability and its Applications, 1968, Volume 13, Issue 1, Pages 65–83
DOI: https://doi.org/10.1137/1113005
Bibliographic databases:
Language: Russian
Citation: V. N. Tutubalin, “Approximation of probability measures in variation and products of random matrices”, Teor. Veroyatnost. i Primenen., 13:1 (1968), 63–81; Theory Probab. Appl., 13:1 (1968), 65–83
Citation in format AMSBIB
\Bibitem{Tut68}
\by V.~N.~Tutubalin
\paper Approximation of probability measures in variation and products of random matrices
\jour Teor. Veroyatnost. i Primenen.
\yr 1968
\vol 13
\issue 1
\pages 63--81
\mathnet{http://mi.mathnet.ru/tvp793}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=226717}
\zmath{https://zbmath.org/?q=an:0196.20701}
\transl
\jour Theory Probab. Appl.
\yr 1968
\vol 13
\issue 1
\pages 65--83
\crossref{https://doi.org/10.1137/1113005}
Linking options:
  • https://www.mathnet.ru/eng/tvp793
  • https://www.mathnet.ru/eng/tvp/v13/i1/p63
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:337
    Full-text PDF :116
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024