Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1999, Volume 44, Issue 2, Pages 466–472
DOI: https://doi.org/10.4213/tvp784
(Mi tvp784)
 

This article is cited in 9 scientific papers (total in 9 papers)

Short Communications

Some distributional properties of a Brownian motion with a drift and an extension of P. Lévy's theorem

A. S. Chernya, A. N. Shiryaevb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (371 kB) Citations (9)
Abstract: The theorem proved by P. Lévy states that $(\sup B-B, \sup B)\stackrel{\mathrm{law}}{=}(|B|,L(B))$. Here, $B$ is a standard linear Brownian motion and $L(B)$ is its local time in zero. In this paper, we present an extension of P. Lévy's theorem to the case of a Brownian motion with a (random) drift as well as to the case of conditionally Gaussian martingales. We also give a simple proof of the equality $2\sup B^{\lambda}-B^{\lambda}\stackrel{\mathrm{law}}{=}|B^{\lambda}|+L(B^{\lambda})$, where $B^{\lambda}$ is the Brownian motion with a drift ${\lambda}\in\mathbb{R}$.
Keywords: P. Lévy's theorem, local time, Brownian motion with a drift, conditionally Gaussian martingales, Skorokhod's lemma.
Received: 25.01.1999
English version:
Theory of Probability and its Applications, 2000, Volume 44, Issue 2, Pages 412–418
DOI: https://doi.org/10.1137/S0040585X97977689
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Cherny, A. N. Shiryaev, “Some distributional properties of a Brownian motion with a drift and an extension of P. Lévy's theorem”, Teor. Veroyatnost. i Primenen., 44:2 (1999), 466–472; Theory Probab. Appl., 44:2 (2000), 412–418
Citation in format AMSBIB
\Bibitem{CheShi99}
\by A.~S.~Cherny, A.~N.~Shiryaev
\paper Some distributional properties of a Brownian motion with a drift and an extension of P.~L\'evy's theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 2
\pages 466--472
\mathnet{http://mi.mathnet.ru/tvp784}
\crossref{https://doi.org/10.4213/tvp784}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751488}
\zmath{https://zbmath.org/?q=an:0974.60058}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 2
\pages 412--418
\crossref{https://doi.org/10.1137/S0040585X97977689}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089405200016}
Linking options:
  • https://www.mathnet.ru/eng/tvp784
  • https://doi.org/10.4213/tvp784
  • https://www.mathnet.ru/eng/tvp/v44/i2/p466
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:1022
    Full-text PDF :247
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024