Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1999, Volume 44, Issue 2, Pages 249–277
DOI: https://doi.org/10.4213/tvp761
(Mi tvp761)
 

This article is cited in 20 scientific papers (total in 20 papers)

Estimates for overshooting an arbitrary boundary by a random walk and their applications

A. A. Borovkov, S. G. Foss

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: Estimates are found for the magnitude of overshoot, by a sequence of random variables, over an arbitrary boundary. If the sequence increments satisfy a so-called condition of asymptotic homogeneity and the boundary is asymptotically “smooth” then the occurrence of the weak convergence to a limit shape (as the boundary is sent away) is established for the distribution of the overshoot value. As an application, we obtain a uniform (over the class of distributions) basic renewal theorem and determine the asymptotics of the average time of crossing a curvilinear border by the trajectories of asymptotically homogeneous Markov chains.
Keywords: sequence of random variables, Markov chain, random walk, time and value of the first overshoot, uniform integrability, nonlinear boundary, asymptotic homogeneity.
Received: 12.10.1998
English version:
Theory of Probability and its Applications, 2000, Volume 44, Issue 2, Pages 231–253
DOI: https://doi.org/10.1137/S0040585X97977537
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, S. G. Foss, “Estimates for overshooting an arbitrary boundary by a random walk and their applications”, Teor. Veroyatnost. i Primenen., 44:2 (1999), 249–277; Theory Probab. Appl., 44:2 (2000), 231–253
Citation in format AMSBIB
\Bibitem{BorFos99}
\by A.~A.~Borovkov, S.~G.~Foss
\paper Estimates for overshooting an arbitrary boundary by a random walk and their applications
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 2
\pages 249--277
\mathnet{http://mi.mathnet.ru/tvp761}
\crossref{https://doi.org/10.4213/tvp761}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751473}
\zmath{https://zbmath.org/?q=an:0969.60074}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 2
\pages 231--253
\crossref{https://doi.org/10.1137/S0040585X97977537}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089405200002}
Linking options:
  • https://www.mathnet.ru/eng/tvp761
  • https://doi.org/10.4213/tvp761
  • https://www.mathnet.ru/eng/tvp/v44/i2/p249
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :198
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024