Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1967, Volume 12, Issue 4, Pages 619–633 (Mi tvp750)  

This article is cited in 5 scientific papers (total in 5 papers)

On estimation of an unknown mean of a multivariate normal distribution

N. N. Chentsov

Moscow
Abstract: The problem of the asymptotically best point estimation is discussed for a simple example (named in the title of the paper). For the family (1) of normal distributions, the natural invariant loss functions are considered, and corresponding functionals of risk function that describe the quality (the uncertainty) of decision rules are introduced.
Theorem 2. {\it Let $\Pi=\Pi_N$ be any decision rule using $N$ independent observations for finding of an estimator $\alpha$ of an unknown parameter $\mathbf a$ of distribution $\Phi_\mathbf a\in\mathfrak N$ $($see $(1))$. Let $R_\Pi(\,\cdot\,)$ be the corresponding risk according to the Gauss loss function $L(\alpha,\mathbf a)=\|\alpha-\mathbf a\|^2=(\alpha_1-\mathbf a_1)^2+\dots+(\alpha_s-\mathbf a_s)^2$. Let us mesure the uncertainty of decision rules by some monotone functional $Q[R_\Pi(\,\cdot\,)]=Q(\Pi)$ of a risk function which is a) convex, b) invariant under Euclidean motions of parameter space, c) is calibrated by $(6)$. Then $Q(\Pi_N)\ge s/N$}.
Theorem 3. Let $\Pi=\Pi_N$ be any decision rule for estimation of an unknown parameter $\mathbf a$ of $\Phi_\mathbf a\in\mathfrak N$, and let $R_\Pi(\mathbf a)$ be the risk function according to $L(\alpha,\mathbf a)=\|\alpha-\mathbf a\|^2$. If in addition there is a Riemann-integrable statistical weight function $p(\mathbf a)$ of a priori possible values of $\mathbf a$, then
$$ Q_p(\Pi)=\int\dots\int R_\Pi(\mathbf a)p(\mathbf a)\,da_1\dots da_s\ge(1-\rho_p(N))s/N $$
where the correction term $\rho(N)=o(1)$ depends on the density $p(\mathbf a)$ only
.
The propositions which are analogous to above mentioned in other statements of the problem are considered. A sufficiently general law is formulated: $\lim\limits_NN\cdot\inf\limits_\Pi Q(\Pi_N)=s$, where $s$ is the dimension of the a priori information. The limits of its validity are discussed. The demonstration methods are based on the inequality of theorem 1 for the mean cubic values of the risk function $R(\mathbf a)$. The statement of theorem 1 is an integral consequence of the information inequality. The paper adjoins [6].
Received: 27.02.1967
English version:
Theory of Probability and its Applications, 1967, Volume 12, Issue 4, Pages 560–574
DOI: https://doi.org/10.1137/1112073
Bibliographic databases:
Language: Russian
Citation: N. N. Chentsov, “On estimation of an unknown mean of a multivariate normal distribution”, Teor. Veroyatnost. i Primenen., 12:4 (1967), 619–633; Theory Probab. Appl., 12:4 (1967), 560–574
Citation in format AMSBIB
\Bibitem{Che67}
\by N.~N.~Chentsov
\paper On estimation of an unknown mean of a~multivariate normal distribution
\jour Teor. Veroyatnost. i Primenen.
\yr 1967
\vol 12
\issue 4
\pages 619--633
\mathnet{http://mi.mathnet.ru/tvp750}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=220389}
\zmath{https://zbmath.org/?q=an:0183.21102}
\transl
\jour Theory Probab. Appl.
\yr 1967
\vol 12
\issue 4
\pages 560--574
\crossref{https://doi.org/10.1137/1112073}
Linking options:
  • https://www.mathnet.ru/eng/tvp750
  • https://www.mathnet.ru/eng/tvp/v12/i4/p619
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:280
    Full-text PDF :152
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024