|
Teoriya Veroyatnostei i ee Primeneniya, 1967, Volume 12, Issue 3, Pages 562–567
(Mi tvp740)
|
|
|
|
Short Communications
On a refinemet of the central limit theorem and its global version
Yu. P. Studnev, Yu. I. Ignat Uzhgorod
Abstract:
Let $\{\xi_k\}$ be a sequence of independent random variables with zero means and $\{\sigma_k^{(2)}\}$ be the sequence of their variances. Denote
\begin{gather*}
s_n=\frac{\xi_1+\dots+\xi_n}{B_n},\quad B_n=\sum_{k=1}^n\sigma_k^2,\quad\Phi_n(x)=\mathbf P(s_n<x)
\\
L_n(x)=\frac1{B_n^2}\sum_{k=1}^n\int_{|z|>x}z^2\,dF_k(z),\quad\Phi(x)=\frac1{\sqrt{2\pi}}\int_{-\infty}^xe^{-x^2/2}\,dt.
\end{gather*}
The main result of the paper is the following. Theorem. {\it Under Lindeberg's condition in the central limit theorem the inequality
$$
|\Phi_n(x)-\Phi(x)|<C\min\biggl\{\frac1{B_n}\int_0^{B_n}L_n(x)\,dx,\quad\frac{\frac1{|x|B_n}\int_0^{|x|B_n}L_n(x)\,dx}{1+x^2}\biggr\},
$$
holds true where $C$ is an absolute constant}.
Received: 10.09.1966
Citation:
Yu. P. Studnev, Yu. I. Ignat, “On a refinemet of the central limit theorem and its global version”, Teor. Veroyatnost. i Primenen., 12:3 (1967), 562–567; Theory Probab. Appl., 12:3 (1967), 508–512
Linking options:
https://www.mathnet.ru/eng/tvp740 https://www.mathnet.ru/eng/tvp/v12/i3/p562
|
|