Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 3, Pages 468–489
DOI: https://doi.org/10.4213/tvp74
(Mi tvp74)
 

This article is cited in 20 scientific papers (total in 20 papers)

On extension of $f$-divergence

A. A. Gushchin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: For a lower semicontinuous convex function $f:\mathbf{R}\to\mathbf{R}\cup\{+\infty\}$, $\mathrm{dom}\,f\subseteq\mathbf{R}_+$, we give a definition and study properties of the $f$-divergence of finitely additive set functions $\mu$ and $\nu$ given on a measurable space $(\Omega,\mathscr{F})$. If $f$ is finite on $(0,+\infty)$ and $\mu$ and $\nu$ are probability measures, our definition is equivalent to the classical definition of the $f$-divergence introduced by Csiszár. As an application, we obtain a result on attaining the minimum by the $f$-divergence over a set $\mathscr{Z}$ of pairs of probability measures.
Keywords: $f$-divergence, finitely additive set function.
Received: 26.02.2007
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 3, Pages 439–455
DOI: https://doi.org/10.1137/S0040585X97983134
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Gushchin, “On extension of $f$-divergence”, Teor. Veroyatnost. i Primenen., 52:3 (2007), 468–489; Theory Probab. Appl., 52:3 (2008), 439–455
Citation in format AMSBIB
\Bibitem{Gus07}
\by A.~A.~Gushchin
\paper On extension of $f$-divergence
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 3
\pages 468--489
\mathnet{http://mi.mathnet.ru/tvp74}
\crossref{https://doi.org/10.4213/tvp74}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2743025}
\zmath{https://zbmath.org/?q=an:05360138}
\elib{https://elibrary.ru/item.asp?id=10437778}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 3
\pages 439--455
\crossref{https://doi.org/10.1137/S0040585X97983134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259971000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55449120295}
Linking options:
  • https://www.mathnet.ru/eng/tvp74
  • https://doi.org/10.4213/tvp74
  • https://www.mathnet.ru/eng/tvp/v52/i3/p468
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:701
    Full-text PDF :198
    References:97
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024