|
Teoriya Veroyatnostei i ee Primeneniya, 1967, Volume 12, Issue 3, Pages 418–425
(Mi tvp724)
|
|
|
|
This article is cited in 20 scientific papers (total in 20 papers)
An asymptotic expansion for the distribution of the maximum likelihood estimation of a vektor parameter
N. M. Mitrofanova Leningrad
Abstract:
Let $X$ he a random variable with a distribution function $f(x,\theta)$ depending on a vector parameter $\theta=(\theta,\dots,\theta_r)$. Let $\widehat\theta_n$ be the maximum likelihood estimate of $\theta$ corresponding to a sample of size $n$. It is proved that under certain conditions on $f(x,\theta)$ the distribution function of $\widehat\theta_n$ has an asymptotic expansion on $n^{1/2}$ with the number of terms depending on properties of $f(x,\theta)$.
Received: 05.07.1966
Citation:
N. M. Mitrofanova, “An asymptotic expansion for the distribution of the maximum likelihood estimation of a vektor parameter”, Teor. Veroyatnost. i Primenen., 12:3 (1967), 418–425; Theory Probab. Appl., 12:3 (1967), 364–372
Linking options:
https://www.mathnet.ru/eng/tvp724 https://www.mathnet.ru/eng/tvp/v12/i3/p418
|
|