Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1967, Volume 12, Issue 2, Pages 373–380 (Mi tvp716)  

This article is cited in 14 scientific papers (total in 14 papers)

Short Communications

A Boundary Problem for Sums of Lattice Random Variables Defined on a Regular Finite Markov Chain

E. L. Presman

Moscow
Abstract: This paper deals with two-dimensional Markov process $\{\xi_n,k_n\}$ the first coordinateof which $\{\xi_n\}$ may be considered as a sequence of sums of lattice random variables defined on a regular finite Markov chain $\{k_n\}$. Some identities are obtained that establish a certain relation between generating functions of various distributions connected with this process. Some properties of the components of these identities are investigated. With the help of these properties we study the asymptotical behaviour of the joint distribution of random variables $\max\limits_{0<m<n}\zeta_m,\zeta_n,k_n$ when some conditions are satisfied.
Received: 12.01.1967
English version:
Theory of Probability and its Applications, 1967, Volume 12, Issue 2, Pages 323–328
DOI: https://doi.org/10.1137/1112039
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. L. Presman, “A Boundary Problem for Sums of Lattice Random Variables Defined on a Regular Finite Markov Chain”, Teor. Veroyatnost. i Primenen., 12:2 (1967), 373–380; Theory Probab. Appl., 12:2 (1967), 323–328
Citation in format AMSBIB
\Bibitem{Pre67}
\by E.~L.~Presman
\paper A~Boundary Problem for Sums of Lattice Random Variables Defined on a~Regular Finite Markov Chain
\jour Teor. Veroyatnost. i Primenen.
\yr 1967
\vol 12
\issue 2
\pages 373--380
\mathnet{http://mi.mathnet.ru/tvp716}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=214142}
\zmath{https://zbmath.org/?q=an:0174.49702}
\transl
\jour Theory Probab. Appl.
\yr 1967
\vol 12
\issue 2
\pages 323--328
\crossref{https://doi.org/10.1137/1112039}
Linking options:
  • https://www.mathnet.ru/eng/tvp716
  • https://www.mathnet.ru/eng/tvp/v12/i2/p373
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024