Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1967, Volume 12, Issue 2, Pages 289–306 (Mi tvp706)  

This article is cited in 10 scientific papers (total in 10 papers)

Coalitional Games

N. N. Vorob'ev

Leningrad
Abstract: Let $\mathfrak K$ be a regular complex with the set of vertices $I$, $\widetilde{\mathfrak K}\subset\mathfrak K$ , and let $H_{\widetilde K}$ ($\widetilde K\in\widetilde{\mathfrak K}$) be the set of real-valued functions of $\prod_{i\in I}S_i$. The vertices of $\mathfrak K$, the faces of $\mathfrak K$ and functions $H_{\widetilde K}$ are said to be players, coalitions and payoffs of coalitions correspondingly. The system
$$ \Gamma=\langle I,\mathfrak K,\{S_i\}_{i\in I},\widetilde{\mathfrak K},\{H_{\widetilde K}\}_{\widetilde K\in\widetilde{\mathfrak K}}\rangle $$
is said to he a coalitional game.
If the dimension of $\mathfrak K$ is 0 and $\widetilde{\mathfrak K}=\mathfrak K$ this definition coincides with that of a noncooperative game due to J. Nash.
In the conditions of a coalitional game some situations can have some properties of stability. The situation $f^*_I$ is said to be stable for coalition $K\in\widetilde{\mathfrak K}$ relative to coalition $K\in\mathfrak K$ if $\widetilde K\cup K\in\mathfrak K$, $\widetilde K\cap K=\Lambda$ and for any coalitional strategies $f_K$ and $f_{\widetilde K}$
$$ H_{\widetilde K}(f^*_I\parallel(f_K,f_{\widetilde K}))\le H_{\widetilde K}(f^*_I\parallel f_K). $$
The stability of situation $f^*_I$ for $\widetilde K$ relative to $K$ essentially means that no failures of $K$ to keep its promises are to change the course of actions of $\widetilde K$.
If $\varphi$ is a set of pairs $\langle\widetilde K,K\rangle$ (i.e. if $\varphi$ is a partial mapping of $\widetilde K$ into $K$) for which $\widetilde K\cup\varphi\widetilde K\in\mathfrak K$ and $\widetilde K\cap\varphi\widetilde K=\Lambda$ the situation $f_I$ is said to be $\varphi$-stable if it is stable for any $\widetilde K$ relative to $\varphi\widetilde K$. In the case of a non-copperative game when $\varphi\widetilde{\mathfrak K}=\Lambda$ the $\varphi$-stability becomes Nash's equilibrium.
Naturally the existence of $\varphi$-stable situations for non-trivial sets $\varphi$ requires some mixture of strategies and situations. As formal tools for constructions of these mixtures and the proof of the corresponding theorems we use coordinated families of measures, of random transitions and their Markovian extentions. All these notions can be interpreted in terms of game $\Gamma$.
For some class of sets $\varphi$ the theorem of existence of $\varphi$-stable situations is proved.
Received: 22.12.1965
English version:
Theory of Probability and its Applications, 1967, Volume 12, Issue 2, Pages 251–266
DOI: https://doi.org/10.1137/1112028
Bibliographic databases:
Language: Russian
Citation: N. N. Vorob'ev, “Coalitional Games”, Teor. Veroyatnost. i Primenen., 12:2 (1967), 289–306; Theory Probab. Appl., 12:2 (1967), 251–266
Citation in format AMSBIB
\Bibitem{Vor67}
\by N.~N.~Vorob'ev
\paper Coalitional Games
\jour Teor. Veroyatnost. i Primenen.
\yr 1967
\vol 12
\issue 2
\pages 289--306
\mathnet{http://mi.mathnet.ru/tvp706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=219323}
\zmath{https://zbmath.org/?q=an:0171.41003}
\transl
\jour Theory Probab. Appl.
\yr 1967
\vol 12
\issue 2
\pages 251--266
\crossref{https://doi.org/10.1137/1112028}
Linking options:
  • https://www.mathnet.ru/eng/tvp706
  • https://www.mathnet.ru/eng/tvp/v12/i2/p289
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024