Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1967, Volume 12, Issue 1, Pages 82–95 (Mi tvp687)  

This article is cited in 1 scientific paper (total in 1 paper)

On the Rate of Convergence in the Multidimensional Central Limit Theorem

V. V. Sazonov

Moscow
Full-text PDF (908 kB) Citations (1)
Abstract: Let ξ1=(ξ1i,,ξ1k),,ξn be a sequence of independent random variables with values in Rk and with common distribuition P. Suppose that M|ξ1i|3<, i=1,,k. The distribution of the sum ni1ξi is Pn. Denote by Qn the k-dimensional normal distribution whose first find second moments coincide with those of Pn respectively. Let Em be the class of all subsets of Rk of the form {x:(l1,x)a1,,(lm,x)am}, ljRk, ajR, j=1,,m, where (lj,x) denotes as usual the inner product of lj and xRk. Finally let Em be the class of all measurable subsets of R^k with the following property: for every E\in\mathscr E''_m there exists a set E_1\in\mathscr E''_m such that E\Delta E_1 belongs to the boundary of E_1, \Delta denoting the symmetric difference.
\textit{Theorem. The following inequality holds
\sup_{E\in\mathscr E''_m}|P^n(E)-Q_n(E)|\le C(k,m)\sup_{l\ne0}\frac{\mathbf M|(l,\xi_1-\mu)|^3}{\mathbf M^{3/2}(l,\xi_1-\mu)^2}n^{-1/2},
where \mu=\mathbf M\xi_1 and C(k,m) is a constant depending only on k and m}.
English version:
Theory of Probability and its Applications, 1967, Volume 12, Issue 1, Pages 77–89
DOI: https://doi.org/10.1137/1112008
Bibliographic databases:
Language: Russian
Citation: V. V. Sazonov, “On the Rate of Convergence in the Multidimensional Central Limit Theorem”, Teor. Veroyatnost. i Primenen., 12:1 (1967), 82–95; Theory Probab. Appl., 12:1 (1967), 77–89
Citation in format AMSBIB
\Bibitem{Saz67}
\by V.~V.~Sazonov
\paper On the Rate of Convergence in the Multidimensional Central Limit Theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 1967
\vol 12
\issue 1
\pages 82--95
\mathnet{http://mi.mathnet.ru/tvp687}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=211446}
\zmath{https://zbmath.org/?q=an:0183.20403|0153.19502}
\transl
\jour Theory Probab. Appl.
\yr 1967
\vol 12
\issue 1
\pages 77--89
\crossref{https://doi.org/10.1137/1112008}
Linking options:
  • https://www.mathnet.ru/eng/tvp687
  • https://www.mathnet.ru/eng/tvp/v12/i1/p82
  • This publication is cited in the following 1 articles:
    1. V. V. Sazonov, “On the speed of convergence in the multi-dimensional central limit theorem”, Theory Probab. Appl., 13 (1968), 188–191  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025