Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1966, Volume 11, Issue 4, Pages 561–578 (Mi tvp660)  

This article is cited in 2 scientific papers (total in 2 papers)

Approximately minimax detecting of a vector signal in Gaussian noise

Yu. V. Linnik

Leningrad
Abstract: In a normal vector sample $(X_1,\dots,X_N)^T$ of independent identically distributed variables $X_i\in\mathscr N(\xi,\Sigma)$, the сovarianсe matrix $\Sigma$ is not supposed to be known, and the hypothesis $H_0$: $\xi=0$ against $H_1$: $N\xi^T\Sigma^{-1}\xi=\delta$ is tested. The Hotelling test
$$ \Phi_N^0\colon T^2=N(N-1)X^TS^{-1}X>T_\varepsilon^2 $$
where
$$ \overline X=N^{-1}\sum_{i=1}^NX_i;\quad S=\sum_{i=1}^N(X_i-X)(X_i-X)^T $$
is proved to be approximately minimax for large samples in the following sense: for all (randomized) tests $\Phi$ of level $\alpha=\alpha_N$ under conditions
$$ O(\exp[-(\ln N)^{1/6}])\le\alpha\le1-O(\exp[-(\ln N)^{1/6}]) $$
and $\delta$'s under condition
$$ \exp[-(\ln N)^{1/6}]\le\delta\le(\ln N)^{1/6} $$
we have
$$ \sup_\Phi\inf_{\theta\in H_1}\mathbf E_\theta\Phi-\inf_{\theta\in H_1}\mathbf E_\theta\Phi_N^0=O_\varepsilon\biggl(\frac1{N^{i-\varepsilon}}\biggr) $$
for any $\varepsilon>0$.
Received: 26.04.1966
English version:
Theory of Probability and its Applications, 1966, Volume 11, Issue 4, Pages 497–512
DOI: https://doi.org/10.1137/1111058
Bibliographic databases:
Language: Russian
Citation: Yu. V. Linnik, “Approximately minimax detecting of a vector signal in Gaussian noise”, Teor. Veroyatnost. i Primenen., 11:4 (1966), 561–578; Theory Probab. Appl., 11:4 (1966), 497–512
Citation in format AMSBIB
\Bibitem{Lin66}
\by Yu.~V.~Linnik
\paper Approximately minimax detecting of a~vector signal in Gaussian noise
\jour Teor. Veroyatnost. i Primenen.
\yr 1966
\vol 11
\issue 4
\pages 561--578
\mathnet{http://mi.mathnet.ru/tvp660}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=208773}
\zmath{https://zbmath.org/?q=an:0163.40204}
\transl
\jour Theory Probab. Appl.
\yr 1966
\vol 11
\issue 4
\pages 497--512
\crossref{https://doi.org/10.1137/1111058}
Linking options:
  • https://www.mathnet.ru/eng/tvp660
  • https://www.mathnet.ru/eng/tvp/v11/i4/p561
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024