Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1966, Volume 11, Issue 3, Pages 534–537 (Mi tvp652)  

This article is cited in 56 scientific papers (total in 56 papers)

Short Communications

The problem of choice and the optimal stopping rule for a sequence of random trials

S. M. Gusein-Zade

Moscow
Abstract: Suppose we have to choose an element from a finite set $A$ which consist of $n$ elements. Let $A$ be ordered by quality. We regard our choice as successful if the selected element is one of the best $r$ elements of $A$. Let us enumerate the elements of $A$ in such order as we learn them. After learning at we know the comparative qualities of $a_1,a_2,\dots,a_t$ but we know nothing about the quality of the remaining $n-t$ elements of $A$. While learning $a_t$ we can either accept it (then the choice is made) or reject it (then it will be impossible to return to it). We describe the optimal policy which secures the greatest probability of the successful choice and describe its asymptotical behaviour as $n\to\infty$.
Received: 13.12.1965
English version:
Theory of Probability and its Applications, 1966, Volume 11, Issue 3, Pages 472–476
DOI: https://doi.org/10.1137/1111050
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. M. Gusein-Zade, “The problem of choice and the optimal stopping rule for a sequence of random trials”, Teor. Veroyatnost. i Primenen., 11:3 (1966), 534–537; Theory Probab. Appl., 11:3 (1966), 472–476
Citation in format AMSBIB
\Bibitem{Gus66}
\by S.~M.~Gusein-Zade
\paper The problem of choice and the optimal stopping rule for a~sequence of random trials
\jour Teor. Veroyatnost. i Primenen.
\yr 1966
\vol 11
\issue 3
\pages 534--537
\mathnet{http://mi.mathnet.ru/tvp652}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=202256}
\zmath{https://zbmath.org/?q=an:0203.20405}
\transl
\jour Theory Probab. Appl.
\yr 1966
\vol 11
\issue 3
\pages 472--476
\crossref{https://doi.org/10.1137/1111050}
Linking options:
  • https://www.mathnet.ru/eng/tvp652
  • https://www.mathnet.ru/eng/tvp/v11/i3/p534
  • This publication is cited in the following 56 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:935
    Full-text PDF :451
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024