|
Teoriya Veroyatnostei i ee Primeneniya, 1966, Volume 11, Issue 3, Pages 381–423
(Mi tvp638)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
On local structure of continuous Markov processes
A. V. Skorokhod Kiev
Abstract:
Let $x_t$ be a continuous Markov process on a locally compact space $X$. In the article the following result is proved. There exists an additive positive functional $\varphi_t$ such that the process $y_t=x_{\tau_t}$ where $\tau_t$ is determined by the equality $\varphi_{\tau_t}=\tau$ posesses such a property: if $F(\xi_1,\dots,\xi_k)$ is a continuous bounded function which has derivatives of the first and the second orders and $\varphi_1,\dots,\varphi_k$ belong to the domain of the infinitesimal generator of the process $y_t$ then
\begin{gather*}
\mathbf M_yF(\varphi_1(y_t),\dots,\varphi_k(y_t))-F(\varphi_1(y),\dots,\varphi_k(y))=\int_0^t\mathbf M\psi(y_s)\,ds,
\\
\psi(y)=\sum a_i(y)\frac{\partial F}{\partial\xi_i}(\varphi_1(y),\dots,\varphi_k(y))+\frac12\sum b_{ij}(y)\frac{\partial^2F}{\partial\xi_i\partial\xi_j}(\varphi_1(y),\dots,\varphi_k(y)),
\end{gather*}
where the coefficients $a_i(y)$, $b_{ij}(y)$ depend on the functions $\varphi_1,\dots,\varphi_k$.
Received: 09.01.1966
Citation:
A. V. Skorokhod, “On local structure of continuous Markov processes”, Teor. Veroyatnost. i Primenen., 11:3 (1966), 381–423; Theory Probab. Appl., 11:3 (1966), 336–372
Linking options:
https://www.mathnet.ru/eng/tvp638 https://www.mathnet.ru/eng/tvp/v11/i3/p381
|
|