Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1999, Volume 44, Issue 1, Pages 148–151
DOI: https://doi.org/10.4213/tvp612
(Mi tvp612)
 

Short Communications

The class $I_0$ for random increasing upper semicontinuous functions

D. Neuenschwander

Université de Lausanne, Ecole des Hautes Etudes Commerciales, Institut de Sciences Actuarielles, Suisse
Abstract: Let $C$ be the convex cone $USC_*([0,1],\mathbf{R}_+)$ of increasing upper semicontinuous functions $g\colon[0,1]\to\mathbf{R}_+$. It is shown that the class $I_0(C)$ of distributions on $C$ without indecomposable factor is strictly included in the class of infinitely divisible distributions on $C$.
Keywords: probability measures without indecomposable factor, upper semicontinuous function, infinitely divisible distributions.
Received: 17.02.1998
English version:
Theory of Probability and its Applications, 2000, Volume 44, Issue 1, Pages 106–109
DOI: https://doi.org/10.1137/S0040585X97977458
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. Neuenschwander, “The class $I_0$ for random increasing upper semicontinuous functions”, Teor. Veroyatnost. i Primenen., 44:1 (1999), 148–151; Theory Probab. Appl., 44:1 (2000), 106–109
Citation in format AMSBIB
\Bibitem{Neu99}
\by D.~Neuenschwander
\paper The class $I_0$ for random increasing upper semicontinuous functions
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 1
\pages 148--151
\mathnet{http://mi.mathnet.ru/tvp612}
\crossref{https://doi.org/10.4213/tvp612}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751200}
\zmath{https://zbmath.org/?q=an:0957.60014}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 1
\pages 106--109
\crossref{https://doi.org/10.1137/S0040585X97977458}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087555000011}
Linking options:
  • https://www.mathnet.ru/eng/tvp612
  • https://doi.org/10.4213/tvp612
  • https://www.mathnet.ru/eng/tvp/v44/i1/p148
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024