Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1999, Volume 44, Issue 1, Pages 115–119
DOI: https://doi.org/10.4213/tvp602
(Mi tvp602)
 

Short Communications

On the mean-variance hedging in the Ho–Lee diffusion model

M. L. Nechaev

Steklov Mathematical Institute, Russian Academy of Sciences
Abstract: On a standard stochastic basis $(\Omega, \mathscr{F}, \mathbb{F}, \mathsf{P})$, we consider a diffusion analogue of the model of interest rates proposed first by Ho and Lee in [ J. Finance, XLI (1986), pp. 1011–1029] for a binomial model. The paper gives a solution of a problem of the mean-variance hedging for an arbitrary contingent claim $H\in\mathscr{L}_2(\mathscr{F}_T,\mathsf{P})$ with expire time $T$. It is shown that the solution proposed is valid for the case where the expire time of a bond, in which means are invested, changes predictably.
Keywords: mean-variance hedging, time structure of interest rates, option, marginal measure.
Received: 04.02.1999
English version:
Theory of Probability and its Applications, 2000, Volume 44, Issue 1, Pages 102–106
DOI: https://doi.org/10.1137/S0040585X97977380
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. L. Nechaev, “On the mean-variance hedging in the Ho–Lee diffusion model”, Teor. Veroyatnost. i Primenen., 44:1 (1999), 115–119; Theory Probab. Appl., 44:1 (2000), 102–106
Citation in format AMSBIB
\Bibitem{Nec99}
\by M.~L.~Nechaev
\paper On the mean-variance hedging in the Ho--Lee diffusion model
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 1
\pages 115--119
\mathnet{http://mi.mathnet.ru/tvp602}
\crossref{https://doi.org/10.4213/tvp602}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751193}
\zmath{https://zbmath.org/?q=an:0958.60077}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 1
\pages 102--106
\crossref{https://doi.org/10.1137/S0040585X97977380}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087555000010}
Linking options:
  • https://www.mathnet.ru/eng/tvp602
  • https://doi.org/10.4213/tvp602
  • https://www.mathnet.ru/eng/tvp/v44/i1/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024