Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 1, Pages 84–110
DOI: https://doi.org/10.4213/tvp6
(Mi tvp6)
 

This article is cited in 30 scientific papers (total in 30 papers)

Matrix subordinators and related Upsilon transformations

O. E. Barndorff-Nielsena, V. Pérez-Abreub

a University of Aarhus
b Center for Mathematical Research
References:
Abstract: A class of upsilon transformations of Lévy measures for matrix subordinators is introduced. Some regularizing properties of these transformations are derived, such as absolute continuity and complete monotonicity. The class of Lévy measures with completely monotone matrix densities is characterized. Examples of infinitely divisible nonnegative definite random matrices are constructed using an upsilon transformation.
Keywords: infinite divisibility, random matrices, Lévy measures, cone valued random variables, completely monotone matrix functions.
Received: 31.05.2005
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 1, Pages 1–23
DOI: https://doi.org/10.1137/S0040585X97982839
Bibliographic databases:
Language: English
Citation: O. E. Barndorff-Nielsen, V. Pérez-Abreu, “Matrix subordinators and related Upsilon transformations”, Teor. Veroyatnost. i Primenen., 52:1 (2007), 84–110; Theory Probab. Appl., 52:1 (2008), 1–23
Citation in format AMSBIB
\Bibitem{BarPer07}
\by O.~E.~Barndorff-Nielsen, V.~P\'erez-Abreu
\paper Matrix subordinators and related Upsilon transformations
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 1
\pages 84--110
\mathnet{http://mi.mathnet.ru/tvp6}
\crossref{https://doi.org/10.4213/tvp6}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354571}
\zmath{https://zbmath.org/?q=an:1152.60017}
\elib{https://elibrary.ru/item.asp?id=9466879}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 1
\pages 1--23
\crossref{https://doi.org/10.1137/S0040585X97982839}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254828600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42549098554}
Linking options:
  • https://www.mathnet.ru/eng/tvp6
  • https://doi.org/10.4213/tvp6
  • https://www.mathnet.ru/eng/tvp/v52/i1/p84
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:648
    Full-text PDF :314
    References:80
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024