Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1999, Volume 44, Issue 1, Pages 87–100
DOI: https://doi.org/10.4213/tvp599
(Mi tvp599)
 

This article is cited in 17 scientific papers (total in 17 papers)

On martingale measures for stochastic processes with independent increments

P. Grandits

Institut für Statistik, Universität Wien, Austria
Abstract: We consider a special semimartingale $X$ with independent increments and prove the existence and equivalence of a local martingale measure $\mathbf{P}^H$ for $X$, which minimizes the Hellinger process under the assumption that there exists an equivalent local martingale measure for $X$. This is done under the restriction of quasi-left-continuity and boundedness of jumps of $X$. Furthermore, we investigate the relation between the well-known minimal martingale measure $\mathbf{P}^{\min}$ and $\mathbf{P}^H$. It is shown that in a sense $\mathbf{P}^{\min}$ is an approximation of $\mathbf{P}^H$.
Keywords: processes with independent increments, equivalent local martingale measure, minimal martingale measure, Hellinger process.
Received: 15.09.1998
English version:
Theory of Probability and its Applications, 2000, Volume 44, Issue 1, Pages 39–50
DOI: https://doi.org/10.1137/S0040585X97977355
Bibliographic databases:
Language: English
Citation: P. Grandits, “On martingale measures for stochastic processes with independent increments”, Teor. Veroyatnost. i Primenen., 44:1 (1999), 87–100; Theory Probab. Appl., 44:1 (2000), 39–50
Citation in format AMSBIB
\Bibitem{Gra99}
\by P.~Grandits
\paper On martingale measures for stochastic processes with independent increments
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 1
\pages 87--100
\mathnet{http://mi.mathnet.ru/tvp599}
\crossref{https://doi.org/10.4213/tvp599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751190}
\zmath{https://zbmath.org/?q=an:0959.60033}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 1
\pages 39--50
\crossref{https://doi.org/10.1137/S0040585X97977355}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087555000004}
Linking options:
  • https://www.mathnet.ru/eng/tvp599
  • https://doi.org/10.4213/tvp599
  • https://www.mathnet.ru/eng/tvp/v44/i1/p87
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :265
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024