|
Teoriya Veroyatnostei i ee Primeneniya, 1965, Volume 10, Issue 4, Pages 672–692
(Mi tvp580)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
On a class of limit distributions for normed sums of independent random variables
A. A. Zinger Leningrad
Abstract:
Let $\zeta_n=\frac{\xi_1+\xi_2+\dots+\xi_n}{B_n}-A_n$ ($n=1,2,\dots$) be a sequence of normed sums $n$ of independent random variables which has a nondegenerate limit distribution $G(x)$ for appropriately selected constants $A_n$, $B_n$.
This paper is devoted to the characterization of the class $\{G(x)\}$ named here $\mathscr P_r$ arizing when among the distributions of the random variables $\xi^i$ there are only $r$ different ones. Three theorems describing the class $\mathscr P_r$ are proved
Received: 18.05.1965
Citation:
A. A. Zinger, “On a class of limit distributions for normed sums of independent random variables”, Teor. Veroyatnost. i Primenen., 10:4 (1965), 672–692; Theory Probab. Appl., 10:4 (1965), 607–626
Linking options:
https://www.mathnet.ru/eng/tvp580 https://www.mathnet.ru/eng/tvp/v10/i4/p672
|
Statistics & downloads: |
Abstract page: | 213 | Full-text PDF : | 93 |
|