Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1966, Volume 11, Issue 1, Pages 161–169 (Mi tvp576)  

This article is cited in 15 scientific papers (total in 15 papers)

Short Communications

Some extremal problems in the queueing theory

B. A. Rogozin

Novosibirsk
Abstract: The simplest queueing systems are considered. It is supposed that the periods of time between two succesive arrivals of the calls $\tau_1,\tau_2,\dots,\tau_n,\dots$ as well as the service times $\eta_1,\eta_2,\dots,\eta_n,\dots$ are independent identically distributed random variables, with $\eta_1,\eta_2,\dots,\eta_n$ being independent of $\tau_1,\tau_2,\dots,\tau_n,\dots$.
In the case of queueing systems it is established that when the usual conditions are satisfied, the distribution of $\tau_1$ is fixed and $\mathbf E\eta_1=\alpha$, the greatest lower bound of the expectation of the limit distribution of the waiting time $\mathbf EW$ is attained on the distribution $\mathbf P\{\eta_1=\alpha\}=1$. The similar question concerning $\mathbf EW$ is considered when the distribution of $\eta_1$ is fixed and $\mathbf E\tau_1=\beta$. Besides in the same situation an upper estimate for $\mathbf EW$ is given.
In the case of systems with losses of calls it is established that the extrema of the probability to be served when the distribution of $\tau_1$ is fixed and $\mathbf E\eta_1=\alpha$ is attained on, the distributions of $\eta_1$ such that $\mathbf P\{\eta_1=x_1\}+\mathbf P\{\eta_2=x_2\}=1$ for some $x_1\ge0$, $x_2\ge0$.
Received: 02.02.1965
English version:
Theory of Probability and its Applications, 1966, Volume 11, Issue 1, Pages 144–151
DOI: https://doi.org/10.1137/1111011
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. A. Rogozin, “Some extremal problems in the queueing theory”, Teor. Veroyatnost. i Primenen., 11:1 (1966), 161–169; Theory Probab. Appl., 11:1 (1966), 144–151
Citation in format AMSBIB
\Bibitem{Rog66}
\by B.~A.~Rogozin
\paper Some extremal problems in the queueing theory
\jour Teor. Veroyatnost. i Primenen.
\yr 1966
\vol 11
\issue 1
\pages 161--169
\mathnet{http://mi.mathnet.ru/tvp576}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=193689}
\zmath{https://zbmath.org/?q=an:0147.36805}
\transl
\jour Theory Probab. Appl.
\yr 1966
\vol 11
\issue 1
\pages 144--151
\crossref{https://doi.org/10.1137/1111011}
Linking options:
  • https://www.mathnet.ru/eng/tvp576
  • https://www.mathnet.ru/eng/tvp/v11/i1/p161
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024