|
Teoriya Veroyatnostei i ee Primeneniya, 1966, Volume 11, Issue 1, Pages 141–143
(Mi tvp573)
|
|
|
|
This article is cited in 8 scientific papers (total in 9 papers)
Short Communications
On an estimate of the remainder in Lindeberg's theorem
I. A. Ibragimov, L. V. Osipov Leningrad
Abstract:
Let $X_1,X_2,\dots$ be a sequence of independent random variables which have the distribution functions $F_1(x),F_2(x),\dots$, the mean values $m_1,m_2,\dots$, the finite variances $\sigma_1^2,\sigma_2^2\dots$ and infinite absolute moments of order $2+\delta$ for any $\delta>0$. The examples of sequences are given for which the estimate
$$
\sup_x|F_n(x)-\Phi(x)|\le C\Psi_n(\varepsilon s_n)
$$
does not hold true. Here $C$ is a constant, $\varepsilon$ is any fixed positive number and $F_n(x)$, $\Phi(x)$, $\Psi_n(\varepsilon s_n)$ are defined on p. 141.
Received: 03.07.1965
Citation:
I. A. Ibragimov, L. V. Osipov, “On an estimate of the remainder in Lindeberg's theorem”, Teor. Veroyatnost. i Primenen., 11:1 (1966), 141–143; Theory Probab. Appl., 11:1 (1966), 125–128
Linking options:
https://www.mathnet.ru/eng/tvp573 https://www.mathnet.ru/eng/tvp/v11/i1/p141
|
|