Abstract:
Let $X, X_1,\dots, X_n,\dots$ be independent identically distributed
$d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be
the distribution of the normalized random vector $X/\sqrt{n}$. Then
$(X_1+\dots+X_n)/\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is
understood in the convolution sense). Let $\pi(\,{\cdot}\,,{\cdot}\,)$ be the
Prokhorov distance. We show that, for any $d$-dimensional distribution $F$,
there exist $c_1(F)>0$ and $c_2(F)>0$ depending only on $F$ such that
$\pi(F_{(n)}^n, F_{(n)}^{n+1})\leqslant c_1(F)/\sqrt n$ and $(F^n)\{A\} \le
(F^{n+1})\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$, $(F^{n+1})\{A\} \leq
(F^n)\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$ for each Borel set $A$ and for all
natural numbers $n$ (here, $A^{\varepsilon}$ denotes the
$\varepsilon$-neighborhood of a set $A$).
Keywords:sum of independent random vectors, proximity of successive convolutions, convex set, the Prokhorov distance, inequality.
Citation:
A. Yu. Zaitsev, “On the proximity of distributions of successive sums in the Prokhorov distance”, Teor. Veroyatnost. i Primenen., 69:2 (2024), 272–284; Theory Probab. Appl., 69:2 (2024), 217–226