Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2024, Volume 69, Issue 2, Pages 272–284
DOI: https://doi.org/10.4213/tvp5690
(Mi tvp5690)
 

On the proximity of distributions of successive sums in the Prokhorov distance

A. Yu. Zaitsevab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
References:
Abstract: Let $X, X_1,\dots, X_n,\dots$ be independent identically distributed $d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be the distribution of the normalized random vector $X/\sqrt{n}$. Then $(X_1+\dots+X_n)/\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is understood in the convolution sense). Let $\pi(\,{\cdot}\,,{\cdot}\,)$ be the Prokhorov distance. We show that, for any $d$-dimensional distribution $F$, there exist $c_1(F)>0$ and $c_2(F)>0$ depending only on $F$ such that $\pi(F_{(n)}^n, F_{(n)}^{n+1})\leqslant c_1(F)/\sqrt n$ and $(F^n)\{A\} \le (F^{n+1})\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$, $(F^{n+1})\{A\} \leq (F^n)\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$ for each Borel set $A$ and for all natural numbers $n$ (here, $A^{\varepsilon}$ denotes the $\varepsilon$-neighborhood of a set $A$).
Keywords: sum of independent random vectors, proximity of successive convolutions, convex set, the Prokhorov distance, inequality.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-289
Received: 15.12.2023
English version:
Theory of Probability and its Applications, 2024, Volume 69, Issue 2, Pages 217–226
DOI: https://doi.org/10.1137/S0040585X97T991878
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Yu. Zaitsev, “On the proximity of distributions of successive sums in the Prokhorov distance”, Teor. Veroyatnost. i Primenen., 69:2 (2024), 272–284; Theory Probab. Appl., 69:2 (2024), 217–226
Citation in format AMSBIB
\Bibitem{Zai24}
\by A.~Yu.~Zaitsev
\paper On the proximity of distributions of successive sums in the Prokhorov distance
\jour Teor. Veroyatnost. i Primenen.
\yr 2024
\vol 69
\issue 2
\pages 272--284
\mathnet{http://mi.mathnet.ru/tvp5690}
\crossref{https://doi.org/10.4213/tvp5690}
\transl
\jour Theory Probab. Appl.
\yr 2024
\vol 69
\issue 2
\pages 217--226
\crossref{https://doi.org/10.1137/S0040585X97T991878}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85202549339}
Linking options:
  • https://www.mathnet.ru/eng/tvp5690
  • https://doi.org/10.4213/tvp5690
  • https://www.mathnet.ru/eng/tvp/v69/i2/p272
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :1
    Russian version HTML:3
    References:19
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024