Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2023, Volume 68, Issue 3, Pages 532–543
DOI: https://doi.org/10.4213/tvp5637
(Mi tvp5637)
 

This article is cited in 3 scientific papers (total in 4 papers)

On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure

A. M. Vershika, M. A. Lifshitsb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
Full-text PDF (463 kB) Citations (4)
References:
Abstract: For a broad class of Banach spaces with Gaussian measure, we show that their entropy in the sense of Shannon (the $\mathrm{mm}$-entropy) is closely related to the entropy of the corresponding ellipsoid of concentration and behaves, in a certain range, as the logarithm of the measure of small balls. Relations between the $\mathrm{mm}$-entropy and the entropy of compact sets are also discussed in light of the classical works of Kolmogorov and Shannon.
Keywords: Gaussian measure, $\mathrm{mm}$-entropy, entropy of compact sets.
Funding agency Grant number
Russian Science Foundation 21-11-00047
Received: 15.02.2023
English version:
Theory of Probability and its Applications, 2023, Volume 68, Issue 3, Pages 431–439
DOI: https://doi.org/10.1137/S0040585X97T991544
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. M. Vershik, M. A. Lifshits, “On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure”, Teor. Veroyatnost. i Primenen., 68:3 (2023), 532–543; Theory Probab. Appl., 68:3 (2023), 431–439
Citation in format AMSBIB
\Bibitem{VerLif23}
\by A.~M.~Vershik, M.~A.~Lifshits
\paper On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 3
\pages 532--543
\mathnet{http://mi.mathnet.ru/tvp5637}
\crossref{https://doi.org/10.4213/tvp5637}
\transl
\jour Theory Probab. Appl.
\yr 2023
\vol 68
\issue 3
\pages 431--439
\crossref{https://doi.org/10.1137/S0040585X97T991544}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85179303429}
Linking options:
  • https://www.mathnet.ru/eng/tvp5637
  • https://doi.org/10.4213/tvp5637
  • https://www.mathnet.ru/eng/tvp/v68/i3/p532
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :16
    References:37
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024