Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2023, Volume 68, Issue 4, Pages 769–778
DOI: https://doi.org/10.4213/tvp5634
(Mi tvp5634)
 

On the complete convergence of moments in exact asymptotics under normal approximation

L. V. Rozovskii

Saint-Petersburg State Chemical-Pharmaceutical University
References:
Abstract: For the sums of the form $\overline I_s(\varepsilon) = \sum_{n\geqslant 1} n^{s-r/2}\mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\,n^\gamma]$, where $S_n = X_1 +\dots + X_n$, $X_n$, $n\geqslant 1$, is a sequence of independent and identically distributed random variables (r.v.'s) $s+1 \geqslant 0$, $r\geqslant 0$, $\gamma>1/2$, and $\varepsilon>0$, new results on their behavior are provided. As an example, we obtain the following generalization of Heyde's result [J. Appl. Probab., 12 (1975), pp. 173–175]: for any $r\geqslant 0$, $\lim_{\varepsilon\searrow 0}\varepsilon^{2}\sum_{n\geqslant 1} n^{-r/2} \mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\, n] =\mathbf{E} |\xi|^{r+2}$ if and only if $\mathbf{E} X=0$ and $\mathbf{E} X^2=1$, and also $\mathbf{E}|X|^{2+r/2}<\infty$ if $r < 4$, $\mathbf{E}|X|^r<\infty$ if $r>4$, and $\mathbf{E} X^4 \ln{(1+|X|)}<\infty$ if $r=4$. Here, $\xi$ is a standard Gaussian r.v.
Keywords: convergence rate, exact asymptotics, complete convergence of moments.
Received: 02.02.2023
Revised: 23.04.2023
Accepted: 16.02.2023
English version:
Theory of Probability and its Applications, 2024, Volume 68, Issue 4, Pages 622–629
DOI: https://doi.org/10.1137/S0040585X97T991660
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. V. Rozovskii, “On the complete convergence of moments in exact asymptotics under normal approximation”, Teor. Veroyatnost. i Primenen., 68:4 (2023), 769–778; Theory Probab. Appl., 68:4 (2024), 622–629
Citation in format AMSBIB
\Bibitem{Roz23}
\by L.~V.~Rozovskii
\paper On the complete convergence of moments in exact asymptotics under normal approximation
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 4
\pages 769--778
\mathnet{http://mi.mathnet.ru/tvp5634}
\crossref{https://doi.org/10.4213/tvp5634}
\transl
\jour Theory Probab. Appl.
\yr 2024
\vol 68
\issue 4
\pages 622--629
\crossref{https://doi.org/10.1137/S0040585X97T991660}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185336251}
Linking options:
  • https://www.mathnet.ru/eng/tvp5634
  • https://doi.org/10.4213/tvp5634
  • https://www.mathnet.ru/eng/tvp/v68/i4/p769
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :1
    References:31
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024