Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2023, Volume 68, Issue 3, Pages 509–531
DOI: https://doi.org/10.4213/tvp5633
(Mi tvp5633)
 

This article is cited in 3 scientific papers (total in 3 papers)

Population size of a critical branching process evolving in unfovarable environment

V. A. Vatutin, E. E. Dyakonova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (562 kB) Citations (3)
References:
Abstract: Let $\{Z_n,\, n=0,1,\dots\}$ be a critical branching process in a random environment and let $\{S_n,\, n=0,1,\dots\}$ be its associated random walk. It is known that if the distribution of increments of this random walk belongs (without centering) to the domain of attraction of a stable distribution, then there is a sequence $a_1,a_2,\dots$ regularly varying at infinity such that, for any ${t\in (0,1]}$ and ${x\in(0,+\infty)}$, $\lim_{n\to \infty}\mathbf{P}({\ln Z_{nt}}/{a_n}\leq x\mid Z_n>0) = \lim_{n\to \infty}\mathbf{P}({S_{nt}}/{a_n}\leq x\mid {Z_n>0})=\mathbf{P}({Y_t^+\leq x})$, where $Y_{t}^{+}$ is the value at point $t$ of the meander of unit length of a strictly stable process. We complement this result with a description of conditional distributions of appropriately normalized random variables (r.v.'s) $\ln Z_{nt}$ and $S_{nt}$, given $\{S_n\leq\varphi(n);\ Z_n>0\}$, where $\varphi (n)\to \infty $ as $n\to \infty $ in such a way that $\varphi (n)=o(a_n)$.
Keywords: branching process, unfavorable random environment, survival probability.
Funding agency Grant number
Russian Science Foundation 19-11-00111-П
Received: 31.01.2023
Accepted: 01.02.2023
English version:
Theory of Probability and its Applications, 2023, Volume 68, Issue 3, Pages 411–430
DOI: https://doi.org/10.1137/S0040585X97T991532
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Vatutin, E. E. Dyakonova, “Population size of a critical branching process evolving in unfovarable environment”, Teor. Veroyatnost. i Primenen., 68:3 (2023), 509–531; Theory Probab. Appl., 68:3 (2023), 411–430
Citation in format AMSBIB
\Bibitem{VatDya23}
\by V.~A.~Vatutin, E.~E.~Dyakonova
\paper Population size of a critical branching process evolving in unfovarable environment
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 3
\pages 509--531
\mathnet{http://mi.mathnet.ru/tvp5633}
\crossref{https://doi.org/10.4213/tvp5633}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4665900}
\transl
\jour Theory Probab. Appl.
\yr 2023
\vol 68
\issue 3
\pages 411--430
\crossref{https://doi.org/10.1137/S0040585X97T991532}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85150938560}
Linking options:
  • https://www.mathnet.ru/eng/tvp5633
  • https://doi.org/10.4213/tvp5633
  • https://www.mathnet.ru/eng/tvp/v68/i3/p509
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :25
    References:31
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024