Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2023, Volume 68, Issue 3, Pages 619–629
DOI: https://doi.org/10.4213/tvp5626
(Mi tvp5626)
 

A weak law of large numbers for dependent random variables

I. Karatzasa, W. Schachermayerb

a Departments of Mathematics and Statistics, Columbia University, New York, NY, USA
b Faculty of Mathematics, University of Vienna, Vienna, Austria
References:
Abstract: Each sequence $f_1,f_2,\dots$ of random variables satisfying $\lim_{M\to \infty}(M\sup_{k\in \mathbf N}\mathbf{P}(|f_k|>M))=0$} contains a subsequence $f_{k_1},f_{k_2},\dots$ which, along with all its subsequences, satisfies the weak law of large numbers $\lim_{N\to\infty}\bigl((1/N) \sum^N_{n=1} f_{k_n}- D_N\bigr)=0$ in probability. Here, $D_N$ is a “corrector” random variable with values in $[-N,N]$ for each $N\in\mathbf{N}$; these correctors are all equal to zero if, in addition, $\lim \inf_{n\to\infty}\mathbf{E}(f^2_n \mathbf{1}_{\{|f_n|\le M\}})=0$ for every $M\in(0,\infty)$.
Keywords: weak law of large numbers, hereditary convergence, weak convergence, truncation, generalized expectation, nonlinear expectation.
Funding agency Grant number
National Science Foundation DMS-20-04977
Austrian Science Fund P-28861
P-35197
This work was supported by National Science Foundation grant DMS-20-04977 and the Austrian Science Fund (FWF) grant P-28861 and grant P-35197.
Received: 06.01.2023
Accepted: 06.01.2023
English version:
Theory of Probability and its Applications, 2023, Volume 68, Issue 3, Pages 501–509
DOI: https://doi.org/10.1137/S0040585X97T991593
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. Karatzas, W. Schachermayer, “A weak law of large numbers for dependent random variables”, Teor. Veroyatnost. i Primenen., 68:3 (2023), 619–629; Theory Probab. Appl., 68:3 (2023), 501–509
Citation in format AMSBIB
\Bibitem{KarSch23}
\by I.~Karatzas, W.~Schachermayer
\paper A weak law of large numbers for dependent random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 3
\pages 619--629
\mathnet{http://mi.mathnet.ru/tvp5626}
\crossref{https://doi.org/10.4213/tvp5626}
\transl
\jour Theory Probab. Appl.
\yr 2023
\vol 68
\issue 3
\pages 501--509
\crossref{https://doi.org/10.1137/S0040585X97T991593}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85179306767}
Linking options:
  • https://www.mathnet.ru/eng/tvp5626
  • https://doi.org/10.4213/tvp5626
  • https://www.mathnet.ru/eng/tvp/v68/i3/p619
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024